Loading…

The 2-aminoethoxydiphenyl borate analog, DPB161 blocks store-operated Ca2+ entry in acutely dissociated rat submandibular cells

Cellular Ca2+ signals play a critical role in cell physiology and pathology. In most non-excitable cells, store-operated Ca2+ entry (SOCE) is an important mechanism by which intracellular Ca2+ signaling is regulated. However, few drugs can selectively modulate SOCE. 2-Aminoethoxydiphenyl borate (2AP...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2017-09, Vol.8 (37), p.61551-61560
Main Authors: Xia, Kunkun, Ma, Zegang, Shen, Jianxin, Li, Menghan, Hou, Baoke, Gao, Ming, Zhang, Shuijun, Wu, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellular Ca2+ signals play a critical role in cell physiology and pathology. In most non-excitable cells, store-operated Ca2+ entry (SOCE) is an important mechanism by which intracellular Ca2+ signaling is regulated. However, few drugs can selectively modulate SOCE. 2-Aminoethoxydiphenyl borate (2APB) and its analogs (DPB162 and DPB163) have been reported to inhibit SOCE. Here, we examined the effects of another 2-APB analog, DPB161 on SOCE in acutely-isolated rat submandibular cells. Both patch-clamp recordings and Ca2+ imaging showed that upon removal of extracellular Ca2+ ([Ca2+]o=0), rat submandibular cells were unable to maintain ACh-induced Ca2+ oscillations, but restoration of [Ca2+]o to refill Ca2+ stores enable recovery of these Ca2+ oscillations. However, addition of 50 μM DPB161 with [Ca2+]o to extracellular solution prevented the refilling of Ca2+ store. Fura-2 Ca2+ imaging showed that DPB161 inhibited SOCE in a concentration-dependent manner. After depleting Ca2+ stores by thapsigargin treatment, bath perfusion of 1 mM Ca2+ induced [Ca2+]i elevation in a manner that was prevented by DPB161. Collectively, these results show that the 2-APB analog DPB161 blocks SOCE in rat submandibular cells, suggesting that this compound can be developed as a pharmacological tool for the study of SOCE function and as a new therapeutic agent for treating SOCE-associated disorders.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.18623