Loading…

CRISPR/Cas9-based Pten knock-out and Sleeping Beauty Transposon-mediated Nras knock-in induces hepatocellular carcinoma and hepatic lipid accumulation in mice

Both Pten and Nras are downstream mediators of receptor tyrosine kinase activation that plays important roles in controlling cell survival and proliferation. Here, we investigated whether and how Pten loss cross-talks with Nras activation in driving liver cancer development in mice. Somatic disrupti...

Full description

Saved in:
Bibliographic Details
Published in:Cancer biology & therapy 2017-07, Vol.18 (7), p.505-512
Main Authors: Gao, Mingming, Liu, Dexi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Both Pten and Nras are downstream mediators of receptor tyrosine kinase activation that plays important roles in controlling cell survival and proliferation. Here, we investigated whether and how Pten loss cross-talks with Nras activation in driving liver cancer development in mice. Somatic disruption of hepatic Pten and overexpression of Nras were achieved in out-bred immunocompetent CD-1 mice through a hydrodynamic delivery of plasmids carrying Sleeping Beauty transposon-based integration of Nras and the CRISPR/Cas9-mediated Pten knockout system. Concurrent Pten knockout and Nras knock-in induced hepatocellular carcinoma, while individual gene manipulation failed. Tumor development was associated with liver fibrosis, hyperlipidemia, hepatic deposition of lipid droplets and glycogen, and hepatomegaly. At the molecular level, lipid droplet formation was primarily contributed by upregulated expression of genes responsible for lipogenesis and fatty acid sequestration, such as Srebpf1, Acc, Pparg and its downstream targets. Our findings demonstrated that Pten disruption was synergized by Nras overexpression in driving hepatocyte malignant transformation, which correlated with extensive formation of lipid droplets.
ISSN:1538-4047
1555-8576
DOI:10.1080/15384047.2017.1323597