Loading…

A Lesion-Based Response Prediction Model Using Pretherapy PET/CT Image Features for Y90 Radioembolization to Hepatic Malignancies

We present a probabilistic approach to identify patients with primary and secondary hepatic malignancies as responders or nonresponders to yttrium-90 radioembolization therapy. Recent advances in computer-aided detection have decreased false-negative and false-positive rates of perceived abnormaliti...

Full description

Saved in:
Bibliographic Details
Published in:Technology in cancer research & treatment 2017-10, Vol.16 (5), p.620-629
Main Authors: Mehta, Rahul, Cai, Kejia, Kumar, Nishant, Knuttinen, M. Grace, Anderson, Thomas M., Lu, Hui, Lu, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a probabilistic approach to identify patients with primary and secondary hepatic malignancies as responders or nonresponders to yttrium-90 radioembolization therapy. Recent advances in computer-aided detection have decreased false-negative and false-positive rates of perceived abnormalities; however, there is limited research in using similar concepts to predict treatment response. Our approach is driven by the goal of precision medicine to determine pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography imaging parameters to facilitate the identification of patients who would benefit most from yttrium-90 radioembolization therapy, while avoiding complex and costly procedures for those who would not. Our algorithm seeks to predict a patient’s response by discovering common co-occurring image patterns in the lesions of baseline fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography scans by extracting invariant shape and texture features. The extracted imaging features were represented as a distribution of each subject based on the bag-of-feature paradigm. The distribution was applied in a multinomial naive Bayes classifier to predict whether a patient would be a responder or nonresponder to yttrium-90 radioembolization therapy based on the imaging features of a pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography scan. Comprehensive published criteria were used to determine lesion-based clinical treatment response based on fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography imaging findings. Our results show that the model is able to predict a patient with liver cancer as a responder or nonresponder to yttrium-90 radioembolization therapy with a sensitivity of 0.791 using extracted invariant imaging features from the pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography test. The sensitivity increased to 0.821 when combining extracted invariant image features with variable features of tumor volume.
ISSN:1533-0346
1533-0338
DOI:10.1177/1533034616666721