Loading…
A Lesion-Based Response Prediction Model Using Pretherapy PET/CT Image Features for Y90 Radioembolization to Hepatic Malignancies
We present a probabilistic approach to identify patients with primary and secondary hepatic malignancies as responders or nonresponders to yttrium-90 radioembolization therapy. Recent advances in computer-aided detection have decreased false-negative and false-positive rates of perceived abnormaliti...
Saved in:
Published in: | Technology in cancer research & treatment 2017-10, Vol.16 (5), p.620-629 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a probabilistic approach to identify patients with primary and secondary hepatic malignancies as responders or nonresponders to yttrium-90 radioembolization therapy. Recent advances in computer-aided detection have decreased false-negative and false-positive rates of perceived abnormalities; however, there is limited research in using similar concepts to predict treatment response. Our approach is driven by the goal of precision medicine to determine pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography imaging parameters to facilitate the identification of patients who would benefit most from yttrium-90 radioembolization therapy, while avoiding complex and costly procedures for those who would not. Our algorithm seeks to predict a patient’s response by discovering common co-occurring image patterns in the lesions of baseline fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography scans by extracting invariant shape and texture features. The extracted imaging features were represented as a distribution of each subject based on the bag-of-feature paradigm. The distribution was applied in a multinomial naive Bayes classifier to predict whether a patient would be a responder or nonresponder to yttrium-90 radioembolization therapy based on the imaging features of a pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography scan. Comprehensive published criteria were used to determine lesion-based clinical treatment response based on fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography imaging findings. Our results show that the model is able to predict a patient with liver cancer as a responder or nonresponder to yttrium-90 radioembolization therapy with a sensitivity of 0.791 using extracted invariant imaging features from the pretherapy fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography test. The sensitivity increased to 0.821 when combining extracted invariant image features with variable features of tumor volume. |
---|---|
ISSN: | 1533-0346 1533-0338 |
DOI: | 10.1177/1533034616666721 |