Loading…
Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release seg...
Saved in:
Published in: | Scientific data 2017-09, Vol.4 (1), p.170117-170117, Article 170117 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (
n
=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM,
n
=135) and low-grade-glioma (TCGA-LGG,
n
=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method.
Design Type(s)
parallel group design • data integration objective
Measurement Type(s)
nuclear magnetic resonance assay
Technology Type(s)
MRI Scanner
Factor Type(s)
diagnosis
Sample Characteristic(s)
Homo sapiens • glioma cell
Machine-accessible metadata file describing the reported data
(ISA-Tab format) |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/sdata.2017.117 |