Loading…

High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism–speed curve in fishes

Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and in...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (49), p.13048-13053
Main Authors: Di Santo, Valentina, Kenaley, Christopher P., Lauder, George V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and increasing expenditure at low and high speeds. However, to date no complete datasets have shown an energetic minimum for swimming fish at intermediate speeds rather than low speeds. To address this knowledge gap, we used a negatively buoyant fish, the clearnose skate Raja eglanteria, and took two approaches: a classic critical swimming speed protocol and a single-speed exercise and recovery procedure. We found an anaerobic component at each velocity tested. The two approaches showed U-shaped, though significantly different, speed–metabolic relationships. These results suggest that (i) postural costs, especially at low speeds, may result in J- or U-shaped metabolism–speed curves; (ii) anaerobic metabolism is involved at all swimming speeds in the clearnose skate; and (iii) critical swimming protocols might misrepresent the true costs of locomotion across speeds, at least in negatively buoyant fish.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1715141114