Loading…

SCWISh network is essential for survival under mechanical pressure

Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bior...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (51), p.13465-13470
Main Authors: Delarue, Morgan, Poterewicz, Gregory, Hoxha, Ori, Choi, Jessica, Yoo, Wonjung, Kayser, Jona, Holt, Liam, Hallatschek, Oskar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3
cites cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3
container_end_page 13470
container_issue 51
container_start_page 13465
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Delarue, Morgan
Poterewicz, Gregory
Hoxha, Ori
Choi, Jessica
Yoo, Wonjung
Kayser, Jona
Holt, Liam
Hallatschek, Oskar
description Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.
doi_str_mv 10.1073/pnas.1711204114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485147</jstor_id><sourcerecordid>26485147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qVdnSnjm1isQFDoEZf8T2BQlWUJBW6oFWPVrGcdhss_FiJ4v47-vV8n2yPPObN89-hOwhHCFIdrzqbTpCiUiBI_IPZIKgsay4ho9kAkBlqTjlO-RLSgsA0ELBZ7JDNSopqJ6Qs-vp36vredH74T7Ef0WbCp-S74fWdkUTYpHGuG7X-TL2tY_F0ru57VuXC6uYyTH6r-RTY7vkvz2eu-TPxfnv6WU5-_Xzano6Kx2XcigryxHQNVXjvbDM8kZoT6HSQAVjtgHlkEmKVFLraiuplrW6qVTjHAB3NdslJ1vd1Xiz9LXLJqPtzCq2SxsfTLCtedvp27m5DWsjpMgOeBY43ArM341dns7MpgaUSiYlrDGzB4_LYrgbfRrMsk3Od53tfRiTQS2hYlSLDbr_Dl2EMfb5KwwFyrliqmKZOt5SLoaUom-eHSCYTZZmk6V5yTJP_Hj93mf-KbwMfN8CizSE-NKvuBLIJfsPkkKjcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024483863</pqid></control><display><type>article</type><title>SCWISh network is essential for survival under mechanical pressure</title><source>PubMed Central</source><source>JSTOR</source><creator>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</creator><creatorcontrib>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</creatorcontrib><description>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711204114</identifier><identifier>PMID: 29187529</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Baking yeast ; Biological Physics ; Biological Sciences ; Bioreactors ; Biotechnology ; Cell cycle ; Cell survival ; Cell walls ; Cells ; Compression ; Compressive properties ; Confined spaces ; G1 phase ; Life Sciences ; Low pressure ; Microfluidics ; Mucin ; Physics ; Pressure ; Pressure cells ; Proteins ; Saccharomyces cerevisiae ; Stress ; Stresses ; Survival ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13465-13470</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 19, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</citedby><cites>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</cites><orcidid>0000-0003-1114-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485147$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485147$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29187529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02273770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delarue, Morgan</creatorcontrib><creatorcontrib>Poterewicz, Gregory</creatorcontrib><creatorcontrib>Hoxha, Ori</creatorcontrib><creatorcontrib>Choi, Jessica</creatorcontrib><creatorcontrib>Yoo, Wonjung</creatorcontrib><creatorcontrib>Kayser, Jona</creatorcontrib><creatorcontrib>Holt, Liam</creatorcontrib><creatorcontrib>Hallatschek, Oskar</creatorcontrib><title>SCWISh network is essential for survival under mechanical pressure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</description><subject>Baking yeast</subject><subject>Biological Physics</subject><subject>Biological Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell cycle</subject><subject>Cell survival</subject><subject>Cell walls</subject><subject>Cells</subject><subject>Compression</subject><subject>Compressive properties</subject><subject>Confined spaces</subject><subject>G1 phase</subject><subject>Life Sciences</subject><subject>Low pressure</subject><subject>Microfluidics</subject><subject>Mucin</subject><subject>Physics</subject><subject>Pressure</subject><subject>Pressure cells</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Stress</subject><subject>Stresses</subject><subject>Survival</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2qVdnSnjm1isQFDoEZf8T2BQlWUJBW6oFWPVrGcdhss_FiJ4v47-vV8n2yPPObN89-hOwhHCFIdrzqbTpCiUiBI_IPZIKgsay4ho9kAkBlqTjlO-RLSgsA0ELBZ7JDNSopqJ6Qs-vp36vredH74T7Ef0WbCp-S74fWdkUTYpHGuG7X-TL2tY_F0ru57VuXC6uYyTH6r-RTY7vkvz2eu-TPxfnv6WU5-_Xzano6Kx2XcigryxHQNVXjvbDM8kZoT6HSQAVjtgHlkEmKVFLraiuplrW6qVTjHAB3NdslJ1vd1Xiz9LXLJqPtzCq2SxsfTLCtedvp27m5DWsjpMgOeBY43ArM341dns7MpgaUSiYlrDGzB4_LYrgbfRrMsk3Od53tfRiTQS2hYlSLDbr_Dl2EMfb5KwwFyrliqmKZOt5SLoaUom-eHSCYTZZmk6V5yTJP_Hj93mf-KbwMfN8CizSE-NKvuBLIJfsPkkKjcQ</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Delarue, Morgan</creator><creator>Poterewicz, Gregory</creator><creator>Hoxha, Ori</creator><creator>Choi, Jessica</creator><creator>Yoo, Wonjung</creator><creator>Kayser, Jona</creator><creator>Holt, Liam</creator><creator>Hallatschek, Oskar</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1114-298X</orcidid></search><sort><creationdate>20171219</creationdate><title>SCWISh network is essential for survival under mechanical pressure</title><author>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Baking yeast</topic><topic>Biological Physics</topic><topic>Biological Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell cycle</topic><topic>Cell survival</topic><topic>Cell walls</topic><topic>Cells</topic><topic>Compression</topic><topic>Compressive properties</topic><topic>Confined spaces</topic><topic>G1 phase</topic><topic>Life Sciences</topic><topic>Low pressure</topic><topic>Microfluidics</topic><topic>Mucin</topic><topic>Physics</topic><topic>Pressure</topic><topic>Pressure cells</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Stress</topic><topic>Stresses</topic><topic>Survival</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delarue, Morgan</creatorcontrib><creatorcontrib>Poterewicz, Gregory</creatorcontrib><creatorcontrib>Hoxha, Ori</creatorcontrib><creatorcontrib>Choi, Jessica</creatorcontrib><creatorcontrib>Yoo, Wonjung</creatorcontrib><creatorcontrib>Kayser, Jona</creatorcontrib><creatorcontrib>Holt, Liam</creatorcontrib><creatorcontrib>Hallatschek, Oskar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delarue, Morgan</au><au>Poterewicz, Gregory</au><au>Hoxha, Ori</au><au>Choi, Jessica</au><au>Yoo, Wonjung</au><au>Kayser, Jona</au><au>Holt, Liam</au><au>Hallatschek, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCWISh network is essential for survival under mechanical pressure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>114</volume><issue>51</issue><spage>13465</spage><epage>13470</epage><pages>13465-13470</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29187529</pmid><doi>10.1073/pnas.1711204114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1114-298X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13465-13470
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754774
source PubMed Central; JSTOR
subjects Baking yeast
Biological Physics
Biological Sciences
Bioreactors
Biotechnology
Cell cycle
Cell survival
Cell walls
Cells
Compression
Compressive properties
Confined spaces
G1 phase
Life Sciences
Low pressure
Microfluidics
Mucin
Physics
Pressure
Pressure cells
Proteins
Saccharomyces cerevisiae
Stress
Stresses
Survival
Yeast
title SCWISh network is essential for survival under mechanical pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCWISh%20network%20is%20essential%20for%20survival%20under%20mechanical%20pressure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Delarue,%20Morgan&rft.date=2017-12-19&rft.volume=114&rft.issue=51&rft.spage=13465&rft.epage=13470&rft.pages=13465-13470&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711204114&rft_dat=%3Cjstor_pubme%3E26485147%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024483863&rft_id=info:pmid/29187529&rft_jstor_id=26485147&rfr_iscdi=true