Loading…
SCWISh network is essential for survival under mechanical pressure
Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bior...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-12, Vol.114 (51), p.13465-13470 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3 |
container_end_page | 13470 |
container_issue | 51 |
container_start_page | 13465 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Delarue, Morgan Poterewicz, Gregory Hoxha, Ori Choi, Jessica Yoo, Wonjung Kayser, Jona Holt, Liam Hallatschek, Oskar |
description | Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network. |
doi_str_mv | 10.1073/pnas.1711204114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26485147</jstor_id><sourcerecordid>26485147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qVdnSnjm1isQFDoEZf8T2BQlWUJBW6oFWPVrGcdhss_FiJ4v47-vV8n2yPPObN89-hOwhHCFIdrzqbTpCiUiBI_IPZIKgsay4ho9kAkBlqTjlO-RLSgsA0ELBZ7JDNSopqJ6Qs-vp36vredH74T7Ef0WbCp-S74fWdkUTYpHGuG7X-TL2tY_F0ru57VuXC6uYyTH6r-RTY7vkvz2eu-TPxfnv6WU5-_Xzano6Kx2XcigryxHQNVXjvbDM8kZoT6HSQAVjtgHlkEmKVFLraiuplrW6qVTjHAB3NdslJ1vd1Xiz9LXLJqPtzCq2SxsfTLCtedvp27m5DWsjpMgOeBY43ArM341dns7MpgaUSiYlrDGzB4_LYrgbfRrMsk3Od53tfRiTQS2hYlSLDbr_Dl2EMfb5KwwFyrliqmKZOt5SLoaUom-eHSCYTZZmk6V5yTJP_Hj93mf-KbwMfN8CizSE-NKvuBLIJfsPkkKjcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024483863</pqid></control><display><type>article</type><title>SCWISh network is essential for survival under mechanical pressure</title><source>PubMed Central</source><source>JSTOR</source><creator>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</creator><creatorcontrib>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</creatorcontrib><description>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1711204114</identifier><identifier>PMID: 29187529</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Baking yeast ; Biological Physics ; Biological Sciences ; Bioreactors ; Biotechnology ; Cell cycle ; Cell survival ; Cell walls ; Cells ; Compression ; Compressive properties ; Confined spaces ; G1 phase ; Life Sciences ; Low pressure ; Microfluidics ; Mucin ; Physics ; Pressure ; Pressure cells ; Proteins ; Saccharomyces cerevisiae ; Stress ; Stresses ; Survival ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13465-13470</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 19, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</citedby><cites>FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</cites><orcidid>0000-0003-1114-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26485147$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26485147$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29187529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02273770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delarue, Morgan</creatorcontrib><creatorcontrib>Poterewicz, Gregory</creatorcontrib><creatorcontrib>Hoxha, Ori</creatorcontrib><creatorcontrib>Choi, Jessica</creatorcontrib><creatorcontrib>Yoo, Wonjung</creatorcontrib><creatorcontrib>Kayser, Jona</creatorcontrib><creatorcontrib>Holt, Liam</creatorcontrib><creatorcontrib>Hallatschek, Oskar</creatorcontrib><title>SCWISh network is essential for survival under mechanical pressure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</description><subject>Baking yeast</subject><subject>Biological Physics</subject><subject>Biological Sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell cycle</subject><subject>Cell survival</subject><subject>Cell walls</subject><subject>Cells</subject><subject>Compression</subject><subject>Compressive properties</subject><subject>Confined spaces</subject><subject>G1 phase</subject><subject>Life Sciences</subject><subject>Low pressure</subject><subject>Microfluidics</subject><subject>Mucin</subject><subject>Physics</subject><subject>Pressure</subject><subject>Pressure cells</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Stress</subject><subject>Stresses</subject><subject>Survival</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2qVdnSnjm1isQFDoEZf8T2BQlWUJBW6oFWPVrGcdhss_FiJ4v47-vV8n2yPPObN89-hOwhHCFIdrzqbTpCiUiBI_IPZIKgsay4ho9kAkBlqTjlO-RLSgsA0ELBZ7JDNSopqJ6Qs-vp36vredH74T7Ef0WbCp-S74fWdkUTYpHGuG7X-TL2tY_F0ru57VuXC6uYyTH6r-RTY7vkvz2eu-TPxfnv6WU5-_Xzano6Kx2XcigryxHQNVXjvbDM8kZoT6HSQAVjtgHlkEmKVFLraiuplrW6qVTjHAB3NdslJ1vd1Xiz9LXLJqPtzCq2SxsfTLCtedvp27m5DWsjpMgOeBY43ArM341dns7MpgaUSiYlrDGzB4_LYrgbfRrMsk3Od53tfRiTQS2hYlSLDbr_Dl2EMfb5KwwFyrliqmKZOt5SLoaUom-eHSCYTZZmk6V5yTJP_Hj93mf-KbwMfN8CizSE-NKvuBLIJfsPkkKjcQ</recordid><startdate>20171219</startdate><enddate>20171219</enddate><creator>Delarue, Morgan</creator><creator>Poterewicz, Gregory</creator><creator>Hoxha, Ori</creator><creator>Choi, Jessica</creator><creator>Yoo, Wonjung</creator><creator>Kayser, Jona</creator><creator>Holt, Liam</creator><creator>Hallatschek, Oskar</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1114-298X</orcidid></search><sort><creationdate>20171219</creationdate><title>SCWISh network is essential for survival under mechanical pressure</title><author>Delarue, Morgan ; Poterewicz, Gregory ; Hoxha, Ori ; Choi, Jessica ; Yoo, Wonjung ; Kayser, Jona ; Holt, Liam ; Hallatschek, Oskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Baking yeast</topic><topic>Biological Physics</topic><topic>Biological Sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell cycle</topic><topic>Cell survival</topic><topic>Cell walls</topic><topic>Cells</topic><topic>Compression</topic><topic>Compressive properties</topic><topic>Confined spaces</topic><topic>G1 phase</topic><topic>Life Sciences</topic><topic>Low pressure</topic><topic>Microfluidics</topic><topic>Mucin</topic><topic>Physics</topic><topic>Pressure</topic><topic>Pressure cells</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Stress</topic><topic>Stresses</topic><topic>Survival</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delarue, Morgan</creatorcontrib><creatorcontrib>Poterewicz, Gregory</creatorcontrib><creatorcontrib>Hoxha, Ori</creatorcontrib><creatorcontrib>Choi, Jessica</creatorcontrib><creatorcontrib>Yoo, Wonjung</creatorcontrib><creatorcontrib>Kayser, Jona</creatorcontrib><creatorcontrib>Holt, Liam</creatorcontrib><creatorcontrib>Hallatschek, Oskar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delarue, Morgan</au><au>Poterewicz, Gregory</au><au>Hoxha, Ori</au><au>Choi, Jessica</au><au>Yoo, Wonjung</au><au>Kayser, Jona</au><au>Holt, Liam</au><au>Hallatschek, Oskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCWISh network is essential for survival under mechanical pressure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-12-19</date><risdate>2017</risdate><volume>114</volume><issue>51</issue><spage>13465</spage><epage>13470</epage><pages>13465-13470</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cells that proliferate within a confined environment build up mechanical compressive stress. For example, mechanical pressure emerges in the naturally space-limited tumor environment. However, little is known about how cells sense and respond to mechanical compression. We developed microfluidic bioreactors to enable the investigation of the effects of compressive stress on the growth of the genetically tractable model organism Saccharomyces cerevisiae. We used this system to determine that compressive stress is partly sensed through a module consisting of the mucin Msb2 and the cell wall protein Sho1, which act together as a sensor module in one of the two major osmosensing pathways in budding yeast. This signal is transmitted via the MAPKKK kinase Ste11. Thus, we term this mechanosensitive pathway the “SMuSh” pathway, for Ste11 through Mucin/Sho1 pathway. The SMuSh pathway delays cells in the G1 phase of the cell cycle and improves cell survival in response to growth-induced pressure. We also found that the cell wall integrity (CWI) pathway contributes to the response to mechanical compressive stress. These latter results are confirmed in complimentary experiments in Mishra et al. [Mishra R, et al. (2017) Proc Natl Acad Sci USA, 10.1073/pnas.1709079114]. When both the SMuSh and the CWI pathways are deleted, cells fail to adapt to compressive stress, and all cells lyse at relatively low pressure when grown in confinement. Thus, we define a network that is essential for cell survival during growth under pressure. We term this mechanosensory system the SCWISh (survival through the CWI and SMuSh) network.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29187529</pmid><doi>10.1073/pnas.1711204114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1114-298X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-12, Vol.114 (51), p.13465-13470 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754774 |
source | PubMed Central; JSTOR |
subjects | Baking yeast Biological Physics Biological Sciences Bioreactors Biotechnology Cell cycle Cell survival Cell walls Cells Compression Compressive properties Confined spaces G1 phase Life Sciences Low pressure Microfluidics Mucin Physics Pressure Pressure cells Proteins Saccharomyces cerevisiae Stress Stresses Survival Yeast |
title | SCWISh network is essential for survival under mechanical pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCWISh%20network%20is%20essential%20for%20survival%20under%20mechanical%20pressure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Delarue,%20Morgan&rft.date=2017-12-19&rft.volume=114&rft.issue=51&rft.spage=13465&rft.epage=13470&rft.pages=13465-13470&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1711204114&rft_dat=%3Cjstor_pubme%3E26485147%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-6a4101cf6fee5a3a4f59e206902533af08c13721272acda7297d8b68fcc004cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2024483863&rft_id=info:pmid/29187529&rft_jstor_id=26485147&rfr_iscdi=true |