Loading…

Geographically weighted temporally correlated logistic regression model

Detecting the temporally and spatially varying correlations is important to understand the biological and disease systems. Here we proposed a geographically weighted temporally correlated logistic regression (GWTCLR) model to identify such dynamic correlation of predictors on binomial outcome data,...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-01, Vol.8 (1), p.1417-14, Article 1417
Main Authors: Liu, Yang, Lam, Kwok-Fai, Wu, Joseph T., Lam, Tommy Tsan-Yuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting the temporally and spatially varying correlations is important to understand the biological and disease systems. Here we proposed a geographically weighted temporally correlated logistic regression (GWTCLR) model to identify such dynamic correlation of predictors on binomial outcome data, by incorporating spatial and temporal information for joint inference. The local likelihood method is adopted to estimate the spatial relationship, while the smoothing method is employed to estimate the temporal variation. We present the construction and implementation of GWTCLR and the study of the asymptotic properties of the proposed estimator. Simulation studies were conducted to evaluate the robustness of the proposed model. GWTCLR was applied on real epidemiologic data to study the climatic determinants of human seasonal influenza epidemics. Our method obtained results largely consistent with previous studies but also revealed certain spatial and temporal varying patterns that were unobservable by previous models and methods.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-19772-6