Loading…
Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau
When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-02, Vol.115 (8), p.1865-1870 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb–O₂ affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb–O₂ affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb–O₂ affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb–O₂ affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1720487115 |