Loading…
Sequence-Dependent Persistence Length of Long DNA
Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain perc...
Saved in:
Published in: | Physical review letters 2017-11, Vol.119 (22), p.227802-227802, Article 227802 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.119.227802 |