Loading…

Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach

The knee adduction moment (KAM) is a surrogate measure for medial compartment knee loading and is related to the progression of knee osteoarthritis. Toe-in and toe-out gait modifications typically reduce the first and second KAM peaks, respectively. We investigated whether assigning a subject-specif...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2018-01, Vol.66, p.103-110
Main Authors: Uhlrich, Scott D., Silder, Amy, Beaupre, Gary S., Shull, Peter B., Delp, Scott L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The knee adduction moment (KAM) is a surrogate measure for medial compartment knee loading and is related to the progression of knee osteoarthritis. Toe-in and toe-out gait modifications typically reduce the first and second KAM peaks, respectively. We investigated whether assigning a subject-specific foot progression angle (FPA) modification reduces the peak KAM by more than assigning the same modification to everyone. To explore the effects of motor learning on muscle coordination and kinetics, we also evaluated the peak knee flexion moment and quadriceps-hamstring co-contraction during normal walking, when subjects first learned their subject-specific FPA, and following 20 min of training. Using vibrotactile feedback, we trained 20 healthy adults to toe-in and toe-out by 5° and 10° relative to their natural FPA, then identified the subject-specific FPA as the angle where each subject maximally reduced their larger KAM peak. When walking at their subject-specific FPA, 18 subjects significantly reduced their larger KAM peak; 8 by toeing-in and 10 by toeing-out. On average, subjects reduced their larger KAM peak by 18.6 ± 16.2% when walking at their subject-specific FPA, which was more than the reductions achieved when all subjects toed-in by 10° (10.0 ± 17.1%, p = .013) or toed-out by 10° (11.0 ± 18.3%, p = .002). Quadriceps-hamstring co-contraction and the peak knee flexion moment increased when subjects first learned their subject-specific FPA, but only co-contraction returned to baseline levels following training. These findings demonstrate that subject-specific gait modifications reduce the peak KAM more than uniformly assigned modifications and have the potential to slow the progression of medial compartment knee osteoarthritis.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2017.11.003