Loading…

IntPred: a structure-based predictor of protein-protein interaction sites

Abstract Motivation Protein-protein interactions are vital for protein function with the average protein having between three and ten interacting partners. Knowledge of precise protein-protein interfaces comes from crystal structures deposited in the Protein Data Bank (PDB), but only 50% of structur...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2018-01, Vol.34 (2), p.223-229
Main Authors: Northey, Thomas C, Barešić, Anja, Martin, Andrew C R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Protein-protein interactions are vital for protein function with the average protein having between three and ten interacting partners. Knowledge of precise protein-protein interfaces comes from crystal structures deposited in the Protein Data Bank (PDB), but only 50% of structures in the PDB are complexes. There is therefore a need to predict protein-protein interfaces in silico and various methods for this purpose. Here we explore the use of a predictor based on structural features and which exploits random forest machine learning, comparing its performance with a number of popular established methods. Results On an independent test set of obligate and transient complexes, our IntPred predictor performs well (MCC = 0.370, ACC = 0.811, SPEC = 0.916, SENS = 0.411) and compares favourably with other methods. Overall, IntPred ranks second of six methods tested with SPPIDER having slightly better overall performance (MCC = 0.410, ACC = 0.759, SPEC = 0.783, SENS = 0.676), but considerably worse specificity than IntPred. As with SPPIDER, using an independent test set of obligate complexes enhanced performance (MCC = 0.381) while performance is somewhat reduced on a dataset of transient complexes (MCC = 0.303). The trade-off between sensitivity and specificity compared with SPPIDER suggests that the choice of the appropriate tool is application-dependent. Availability and implementation IntPred is implemented in Perl and may be downloaded for local use or run via a web server at www.bioinf.org.uk/intpred/. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btx585