Loading…

Protein-protein interaction specificity is captured by contact preferences and interface composition

Abstract Motivation Large-scale computational docking will be increasingly used in future years to discriminate protein-protein interactions at the residue resolution. Complete cross-docking experiments make in silico reconstruction of protein-protein interaction networks a feasible goal. They ask f...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2018-02, Vol.34 (3), p.459-468
Main Authors: Nadalin, Francesca, Carbone, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation Large-scale computational docking will be increasingly used in future years to discriminate protein-protein interactions at the residue resolution. Complete cross-docking experiments make in silico reconstruction of protein-protein interaction networks a feasible goal. They ask for efficient and accurate screening of the millions structural conformations issued by the calculations. Results We propose CIPS (Combined Interface Propensity for decoy Scoring), a new pair potential combining interface composition with residue-residue contact preference. CIPS outperforms several other methods on screening docking solutions obtained either with all-atom or with coarse-grain rigid docking. Further testing on 28 CAPRI targets corroborates CIPS predictive power over existing methods. By combining CIPS with atomic potentials, discrimination of correct conformations in all-atom structures reaches optimal accuracy. The drastic reduction of candidate solutions produced by thousands of proteins docked against each other makes large-scale docking accessible to analysis. Availability and implementation CIPS source code is freely available at http://www.lcqb.upmc.fr/CIPS. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btx584