Loading…

Empirical Null Estimation Using Zero-Inflated Discrete Mixture Distributions and its Application to Protein Domain Data

In recent mutation studies, analyses based on protein domain positions are gaining popularity over gene-centric approaches since the latter have limitations in considering the functional context that the position of the mutation provides. This presents a large-scale simultaneous inference problem, w...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2018-06, Vol.74 (2), p.458-471
Main Authors: Gauran, Iris Ivy M., Park, Junyong, Lim, Johan, Park, DoHwan, Zylstra, John, Peterson, Thomas, Kann, Maricel, Spouge, John L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent mutation studies, analyses based on protein domain positions are gaining popularity over gene-centric approaches since the latter have limitations in considering the functional context that the position of the mutation provides. This presents a large-scale simultaneous inference problem, with hundreds of hypothesis tests to consider at the same time. This article aims to select significant mutation counts while controlling a given level of Type I error via False Discovery Rate (FDR) procedures. One main assumption is that the mutation counts follow a zero-inflated model in order to account for the true zeros in the count model and the excess zeros. The class of models considered is the Zero-inflated Generalized Poisson (ZIGP) distribution. Furthermore, we assumed that there exists a cut-off value such that smaller counts than this value are generated from the null distribution. We present several data-dependent methods to determine the cut-off value. We also consider a two-stage procedure based on screening process so that the number of mutations exceeding a certain value should be considered as significant mutations. Simulated and protein domain data sets are used to illustrate this procedure in estimation of the empirical null using a mixture of discrete distributions. Overall, while maintaining control of the FDR, the proposed two-stage testing procedure has superior empirical power.
ISSN:0006-341X
1541-0420
DOI:10.1111/biom.12779