Loading…

Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii

Abstract Objectives To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Methods Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of antimicrobial chemotherapy 2018-06, Vol.73 (6), p.1492-1500
Main Authors: Liu, Qi, Hassan, Karl A, Ashwood, Heather E, Gamage, Hasinika K A H, Li, Liping, Mabbutt, Bridget C, Paulsen, Ian T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objectives To investigate the function of AceR, a putative transcriptional regulator of the chlorhexidine efflux pump gene aceI in Acinetobacter baumannii. Methods Chlorhexidine susceptibility and chlorhexidine induction of aceI gene expression were determined by MIC and quantitative real-time PCR, respectively, in A. baumannii WT and ΔaceR mutant strains. Recombinant AceR was prepared as both a full-length protein and as a truncated protein, AceR (86–299), i.e. AceRt, which has the DNA-binding domain deleted. The binding interaction of the purified AceR protein and its putative operator region was investigated by electrophoretic mobility shift assays and DNase I footprinting assays. The binding of AceRt with its putative ligand chlorhexidine was examined using surface plasmon resonance and tryptophan fluorescence quenching assays. Results MIC determination assays indicated that the ΔaceI and ΔaceR mutant strains both showed lower resistance to chlorhexidine than the parental strain. Chlorhexidine-induced expression of aceI was abolished in a ΔaceR background. Electrophoretic mobility shift assays and DNase I footprinting assays demonstrated chlorhexidine-stimulated binding of AceR with two sites upstream of the putative aceI promoter. Surface plasmon resonance and tryptophan fluorescence quenching assays suggested that the purified ligand-binding domain of the AceR protein was able to bind with chlorhexidine with high affinity. Conclusions This study provides strong evidence that AceR is an activator of aceI gene expression when challenged with chlorhexidine. This study is the first characterization, to our knowledge, of a regulator controlling expression of a PACE family multidrug efflux pump.
ISSN:0305-7453
1460-2091
DOI:10.1093/jac/dky034