Loading…
Peak Lower Extremity Landing Kinematics in Dancers and Nondancers
Anterior cruciate ligament (ACL) injuries often occur during jump landings and can have detrimental short-term and long-term functional effects on quality of life. Despite frequently performing jump landings, dancers have lower incidence rates of ACL injury than other jump-landing athletes. Planned...
Saved in:
Published in: | Journal of athletic training 2018-04, Vol.53 (4), p.379-385 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anterior cruciate ligament (ACL) injuries often occur during jump landings and can have detrimental short-term and long-term functional effects on quality of life. Despite frequently performing jump landings, dancers have lower incidence rates of ACL injury than other jump-landing athletes. Planned versus unplanned activities and footwear may explain differing ACL-injury rates among dancers and nondancers. Still, few researchers have compared landing biomechanics between dancers and nondancers.
To compare the landing biomechanics of dancers and nondancers during single-legged (SL) drop-vertical jumps.
Cross-sectional study.
Laboratory.
A total of 39 healthy participants, 12 female dancers (age = 20.9 ± 1.8 years, height = 166.4 ± 6.7 cm, mass = 63.2 ± 16.4 kg), 14 female nondancers (age = 20.2 ± 0.9 years, height = 168.9 ± 5.0 cm, mass = 61.6 ± 7.7 kg), and 13 male nondancers (age = 22.2 ± 2.7 years, height = 180.6 ± 9.7 cm, mass = 80.8 ± 13.2 kg).
Participants performed SL-drop-vertical jumps from a 30-cm-high box in a randomized order in 2 activity (planned, unplanned) and 2 footwear (shod, barefoot) conditions while a 3-dimensional system recorded landing biomechanics.
Overall peak sagittal-plane and frontal-plane ankle-, knee-, and hip-joint kinematics (joint angles) were compared across groups using separate multivariate analyses of variance followed by main-effects testing and pairwise-adjusted Bonferroni comparisons as appropriate ( P < .05).
No 3-way interactions existed for sagittal-plane or frontal-plane ankle (Wilks λ = 0.85, P = .11 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 1.00, P = .93 and Wilks λ = 0.94, P = .36, respectively), or hip (Wilks λ = 0.99, P = .88 and Wilks λ = 0.97, P = .62, respectively) kinematics. We observed no group × footwear interactions for sagittal-plane or frontal-plane ankle (Wilks λ = 0.94, P = .43 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 0.97, P = .60 and Wilks λ = 0.97, P = .66, respectively), or hip (Wilks λ = 0.99, P = .91 and Wilks λ = 1.00, P = .93, respectively) kinematics, and no group × activity interactions were noted for ankle frontal-plane (Wilks λ = 0.92, P = .29) and sagittal- and frontal-plane knee (Wilks λ = 0.99, P = .81 and Wilks λ = 0.98, P = .77, respectively) and hip (Wilks λ = 0.88, P = .13 and Wilks λ = 0.85, P = .08, respectively) kinematics. A group × activity interaction (Wilks λ = 0.76, P = .02) was present for ankle sagittal-plane kinemati |
---|---|
ISSN: | 1062-6050 1938-162X |
DOI: | 10.4085/1062-6050-465-16 |