Loading…

The antihelminthic moxidectin enhances tonic GABA currents in rodent hippocampal pyramidal neurons

Macrocyclic lactones (MLs) are commonly used treatments for parasitic worm and insect infections in humans, livestock, and companion animals. MLs target the invertebrate glutamate-activated chloride channel that is not present in vertebrates. MLs are not entirely inert in vertebrates, though; they h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 2018-05, Vol.119 (5), p.1693-1698
Main Authors: Spampanato, Jay, Gibson, Anne, Dudek, F Edward
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macrocyclic lactones (MLs) are commonly used treatments for parasitic worm and insect infections in humans, livestock, and companion animals. MLs target the invertebrate glutamate-activated chloride channel that is not present in vertebrates. MLs are not entirely inert in vertebrates, though; they have been reported to have activity in heterologous expression systems consisting of ligand-gated ion channels that are present in the mammalian central nervous system (CNS). However, these compounds are typically not able to reach significant concentrations in the CNS because of the activity of the blood-brain barrier P-glycoprotein extrusion system. Despite this, these compounds are able to reach low levels in the CNS that may be useful in the design of novel "designer" ligand-receptor systems that can be used to directly investigate neuronal control of behavior in mammals and have potential for use in treating human neurological diseases. To determine whether MLs might affect neurons in intact brains, we investigated the activity of the ML moxidectin (MOX) at native GABA receptors. Specifically, we recorded tonic and phasic miniature inhibitory postsynaptic currents (mIPSCs) in ex vivo brain slices. Our data show that MOX potentiated tonic GABA currents in a dose-dependent manner but had no concomitant effects on phasic GABA currents (i.e., MOX had no effect on the amplitude, frequency, or decay kinetics of mIPSCs). These studies indicate that behavioral experiments that implement a ML-based novel ligand-receptor system should take care to control for potential effects of the ML on native tonic GABA receptors. NEW & NOTEWORTHY We have identified a novel mechanism of action in the mammalian central nervous system for the antihelminthic moxidectin, commonly prescribed to animals worldwide and currently being evaluated for use in humans. Specifically, moxidectin applied to rodent brain slices selectively enhanced the tonic GABA conductance of hippocampal pyramidal neurons.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00587.2017