Loading…

Powerful and robust cross‐phenotype association test for case‐parent trios

ABSTRACT There has been increasing interest in identifying genes within the human genome that influence multiple diverse phenotypes. In the presence of pleiotropy, joint testing of these phenotypes is not only biologically meaningful but also statistically more powerful than univariate analysis of e...

Full description

Saved in:
Bibliographic Details
Published in:Genetic epidemiology 2018-07, Vol.42 (5), p.447-458
Main Authors: Fischer, S. Taylor, Jiang, Yunxuan, Broadaway, K. Alaine, Conneely, Karen N., Epstein, Michael P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT There has been increasing interest in identifying genes within the human genome that influence multiple diverse phenotypes. In the presence of pleiotropy, joint testing of these phenotypes is not only biologically meaningful but also statistically more powerful than univariate analysis of each separate phenotype accounting for multiple testing. Although many cross‐phenotype association tests exist, the majority of such methods assume samples composed of unrelated subjects and therefore are not applicable to family‐based designs, including the valuable case‐parent trio design. In this paper, we describe a robust gene‐based association test of multiple phenotypes collected in a case‐parent trio study. Our method is based on the kernel distance covariance (KDC) method, where we first construct a similarity matrix for multiple phenotypes and a similarity matrix for genetic variants in a gene; we then test the dependency between the two similarity matrices. The method is applicable to either common variants or rare variants in a gene, and resulting tests from the method are by design robust to confounding due to population stratification. We evaluated our method through simulation studies and observed that the method is substantially more powerful than standard univariate testing of each separate phenotype. We also applied our method to phenotypic and genotypic data collected in case‐parent trios as part of the Genetics of Kidneys in Diabetes (GoKinD) study and identified a genome‐wide significant gene demonstrating cross‐phenotype effects that was not identified using standard univariate approaches.
ISSN:0741-0395
1098-2272
DOI:10.1002/gepi.22116