Loading…

Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river

Water hyacinth (Eichhornia crassipes) has been used for environmentally sustainable phytoremediation of water, though its use has been geographically restricted. For the first time we extend its geographical reach by investigating its potential for clean-up of water from a highly polluted British ri...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-07, Vol.8 (1), p.11071-15, Article 11071
Main Authors: Jones, Jonathan L., Jenkins, Richard O., Haris, Parvez I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water hyacinth (Eichhornia crassipes) has been used for environmentally sustainable phytoremediation of water, though its use has been geographically restricted. For the first time we extend its geographical reach by investigating its potential for clean-up of water from a highly polluted British river (Nant-Y-Fendrod, a tributary of the River Tawe). Investigations using the plant were conducted at three levels: a bench-scale study using polluted river water and synthetic solutions; an in-situ trial using water hyacinth within the Nant-Y-Fendrod; and a bankside trial to pump and treat river water. The removal of the largest number of heavy metals (21) from water in a single study using ICP-MS is reported, including Sb, for the first time. Results are promising, with bench-scale tests demonstrating up to 63% removal of Al, 62% Zn, 47% Cd, 22% Mn and 23% As, during just seven hours exposure to the plant. When extended to three weeks exposure, removal is evident in the order Al > Cd > Zn > Mn > Ni > As > V. Furthermore, in-situ mean removal of 6%, 11% and 15% of Mn, Zn and Cd respectively is demonstrated. As the world learns to adapt to climate change, studies of the type reported here are needed to exploit the remarkable phytoremediation potential of water hyacinth.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-29387-6