Loading…
Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river
Water hyacinth (Eichhornia crassipes) has been used for environmentally sustainable phytoremediation of water, though its use has been geographically restricted. For the first time we extend its geographical reach by investigating its potential for clean-up of water from a highly polluted British ri...
Saved in:
Published in: | Scientific reports 2018-07, Vol.8 (1), p.11071-15, Article 11071 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water hyacinth
(Eichhornia crassipes)
has been used for environmentally sustainable phytoremediation of water, though its use has been geographically restricted. For the first time we extend its geographical reach by investigating its potential for clean-up of water from a highly polluted British river (Nant-Y-Fendrod, a tributary of the River Tawe). Investigations using the plant were conducted at three levels: a bench-scale study using polluted river water and synthetic solutions; an
in-situ
trial using water hyacinth within the Nant-Y-Fendrod; and a bankside trial to pump and treat river water. The removal of the largest number of heavy metals (21) from water in a single study using ICP-MS is reported, including Sb, for the first time. Results are promising, with bench-scale tests demonstrating up to 63% removal of Al, 62% Zn, 47% Cd, 22% Mn and 23% As, during just seven hours exposure to the plant. When extended to three weeks exposure, removal is evident in the order Al > Cd > Zn > Mn > Ni > As > V. Furthermore,
in-situ
mean removal of 6%, 11% and 15% of Mn, Zn and Cd respectively is demonstrated. As the world learns to adapt to climate change, studies of the type reported here are needed to exploit the remarkable phytoremediation potential of water hyacinth. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-29387-6 |