Loading…
Neural Computations Underlying Causal Structure Learning
Behavioral evidence suggests that beliefs about causal structure constrain associative learning, determining which stimuli can enter into association, as well as the functional form of that association. Bayesian learning theory provides one mechanism by which structural beliefs can be acquired from...
Saved in:
Published in: | The Journal of neuroscience 2018-08, Vol.38 (32), p.7143-7157 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Behavioral evidence suggests that beliefs about causal structure constrain associative learning, determining which stimuli can enter into association, as well as the functional form of that association. Bayesian learning theory provides one mechanism by which structural beliefs can be acquired from experience, but the neural basis of this mechanism is poorly understood. We studied this question with a combination of behavioral, computational, and neuroimaging techniques. Male and female human subjects learned to predict an outcome based on cue and context stimuli while being scanned using fMRI. Using a model-based analysis of the fMRI data, we show that structure learning signals are encoded in posterior parietal cortex, lateral prefrontal cortex, and the frontal pole. These structure learning signals are distinct from associative learning signals. Moreover, representational similarity analysis and information mapping revealed that the multivariate patterns of activity in posterior parietal cortex and anterior insula encode the full posterior distribution over causal structures. Variability in the encoding of the posterior across subjects predicted variability in their subsequent behavioral performance. These results provide evidence for a neural architecture in which structure learning guides the formation of associations.
Animals are able to infer the hidden structure behind causal relations between stimuli in the environment, allowing them to generalize this knowledge to stimuli they have never experienced before. A recently published computational model based on this idea provided a parsimonious account of a wide range of phenomena reported in the animal learning literature, suggesting a dedicated neural mechanism for learning this hidden structure. Here, we validate this model by measuring brain activity during a task that involves both structure learning and associative learning. We show that a distinct network of regions supports structure learning and that the neural signal corresponding to beliefs about structure predicts future behavioral performance. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.3336-17.2018 |