Loading…
Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy
Efficient nonviral oral gene delivery offers an attractive modality for chronic protein replacement therapy. Herein, the oral delivery of insulin gene is reported by a nonviral vector comprising a copolymer with a high degree of substitution of branched polyethylenimine on chitosan (CS‐g‐bPEI). Prot...
Saved in:
Published in: | Advanced science 2018-08, Vol.5 (8), p.1701079-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient nonviral oral gene delivery offers an attractive modality for chronic protein replacement therapy. Herein, the oral delivery of insulin gene is reported by a nonviral vector comprising a copolymer with a high degree of substitution of branched polyethylenimine on chitosan (CS‐g‐bPEI). Protecting the plasmid from gastric acidic degradation and facilitating transport across the gut epithelium, the CS‐g‐bPEI/insulin plasmid DNA nanoparticles (NPs) can achieve systemic transgene expression for days. A single dose of orally administered NPs (600 µg plasmid insulin (pINS)) to diabetic mice can protect the animals from hyperglycemia for more than 10 d. Three repeated administrations spaced over a 10 d interval produce similar glucose‐lowering results with no hepatotoxicity detected. Positron‐emission‐tomography and computed‐tomography images also confirm the glucose utilization by muscle cells. While this work suggests the feasibility of basal therapy for diabetes mellitus, its significance lies in the demonstration of a nonviral oral gene delivery system that can impact chronic protein replacement therapy and DNA vaccination.
A nonviral vector is synthesized for the oral delivery of an insulin plasmid. By protecting the plasmid from gastric acidic degradation and facilitating transport across the gut epithelium, the gene delivery system can achieve sustained blood‐glucose lowering effects in diabetic mice, following repeated oral administrations. The findings suggest this new nonviral gene delivery system is applicable for chronic protein replacement therapy. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.201701079 |