Loading…
MUFOLD‐SS: New deep inception‐inside‐inception networks for protein secondary structure prediction
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception‐i...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2018-05, Vol.86 (5), p.592-598 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception‐inside‐inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD‐SS. The input to MUFOLD‐SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio‐chemical properties of amino acids, PSI‐BLAST profile, and HHBlits profile. MUFOLD‐SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD‐SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD‐SS outperformed the best existing methods and other deep neural networks significantly. MUFold‐SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. |
---|---|
ISSN: | 0887-3585 1097-0134 |
DOI: | 10.1002/prot.25487 |