Loading…
PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes
Glucagon-mediated gene transcription in the liver is critical for maintaining glucose homeostasis. Promoting the induction of gluconeogenic genes and blocking that of insulin receptor substrate ( Irs )2 in hepatocytes contributes to the pathogenesis of type 2 diabetes. However, the molecular mechani...
Saved in:
Published in: | Scientific reports 2018-09, Vol.8 (1), p.14290-16, Article 14290 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glucagon-mediated gene transcription in the liver is critical for maintaining glucose homeostasis. Promoting the induction of gluconeogenic genes and blocking that of
insulin receptor substrate
(
Irs
)2 in hepatocytes contributes to the pathogenesis of type 2 diabetes. However, the molecular mechanism by which glucagon signalling regulates hepatocyte metabolism is not fully understood. We previously showed that a fasting-inducible signalling module consisting of general control non-repressed protein 5, co-regulator cAMP response element-binding protein binding protein/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2, and protein kinase A is required for glucagon-induced transcription of gluconeogenic genes. The present study aimed to identify the downstream effectors of this module in hepatocytes by examining glucagon-induced potential target genes. One of these genes was
prolyl hydroxylase domain
(
PHD
)3, which suppressed stress signalling through inhibition of the IκB kinase–nuclear factor-κB pathway in a proline hydroxylase-independent manner to maintain insulin signalling. PHD3 was also required for peroxisome proliferator–activated receptor γ coactivator 1α-induced gluconeogenesis, which was dependent on proline hydroxylase activity, suggesting that PHD3 regulates metabolism in response to glucagon as well as insulin. These findings demonstrate that glucagon-inducible PHD3 regulates glucose metabolism by suppressing stress signalling and optimising gluconeogenesis and insulin signalling in hepatocytes. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-32575-z |