Loading…
YAMDA: thousandfold speedup of EM-based motif discovery using deep learning libraries and GPU
Abstract Motivation Motif discovery in large biopolymer sequence datasets can be computationally demanding, presenting significant challenges for discovery in omics research. MEME, arguably one of the most popular motif discovery software, takes quadratic time with respect to dataset size, leading t...
Saved in:
Published in: | Bioinformatics 2018-10, Vol.34 (20), p.3578-3580 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Motivation
Motif discovery in large biopolymer sequence datasets can be computationally demanding, presenting significant challenges for discovery in omics research. MEME, arguably one of the most popular motif discovery software, takes quadratic time with respect to dataset size, leading to excessively long runtimes for large datasets. Therefore, there is a demand for fast programs that can generate results of the same quality as MEME.
Results
Here we describe YAMDA, a highly scalable motif discovery software package. It is built on Pytorch, a tensor computation deep learning library with strong GPU acceleration that is highly optimized for tensor operations that are also useful for motifs. YAMDA takes linear time to find motifs as accurately as MEME, completing in seconds or minutes, which translates to speedups over a thousandfold.
Availability and implementation
YAMDA is freely available on Github (https://github.com/daquang/YAMDA).
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bty396 |