Loading…
Drought losses in China might double between the 1.5 °C and 2.0 °C warming
We project drought losses in China under global temperature increase of 1.5 °C and 2.0 °C, based on the Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI), a cluster analysis method, and “intensity-loss rate” function. In contrast to earlier studi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2018-10, Vol.115 (42), p.10600-10605 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We project drought losses in China under global temperature increase of 1.5 °C and 2.0 °C, based on the Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI), a cluster analysis method, and “intensity-loss rate” function. In contrast to earlier studies, to project the drought losses, we predict the regional gross domestic product under shared socioeconomic pathways instead of using a static socioeconomic scenario. We identify increasing precipitation and evapotranspiration pattern for the 1.5 °C and 2.0 °C global warming above the preindustrial at 2020–2039 and 2040–2059, respectively. With increasing drought intensity and areal coverage across China, drought losses will soar. The estimated loss in a sustainable development pathway at the 1.5 °C warming level increases 10-fold in comparison with the reference period 1986–2005 and nearly threefold relative to the interval 2006–2015. However, limiting the temperature increase to 1.5 °C can reduce the annual drought losses in China by several tens of billions of US dollars, compared with the 2.0 °C warming. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1802129115 |