Loading…

A Continuum of Proton-Coupled Electron Transfer Reactivity

Conspectus Proton-coupled electron transfer (PCET) covers a wide range of reactions involving the transfer(s) of electrons and protons. The best-known PCET reaction, hydrogen atom transfer (HAT), has been studied in detail for more than a century. HAT is generally described as the concerted transfer...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research 2018-10, Vol.51 (10), p.2391-2399
Main Authors: Darcy, Julia W, Koronkiewicz, Brian, Parada, Giovanny A, Mayer, James M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conspectus Proton-coupled electron transfer (PCET) covers a wide range of reactions involving the transfer(s) of electrons and protons. The best-known PCET reaction, hydrogen atom transfer (HAT), has been studied in detail for more than a century. HAT is generally described as the concerted transfer of a hydrogen atom (H• ≡ H+ + e –) from one group to another, Y + H–X → Y–H + X, but a strict definition of HAT has been difficult to establish. Distinctions are more challenging when the transfer of “H•” involves e – and H+ that transfer to/from spatially distinct sites or even completely separate reagents (multiple-site concerted proton–electron transfer, MS-CPET). MS-CPET reactivity is increasingly proposed in biological and synthetic contexts, and some reactions typically described as HAT more resemble MS-CPET. Despite that HAT and MS-CPET reactions “look different,” we argue here that these reactions lie on a reactivity continuum, and that they are governed by many of the same key parameters. This Account walks the reader across this PCET reactivity continuum, using a series of studies to show the strong similarities of reactions that move protons and electrons in seemingly different ways. To prepare for our stroll, we describe the thermochemical and kinetic frameworks for HAT and MS-CPET. The driving force for a solution HAT reaction is most easily discussed as the difference in the bond dissociation free energies (BDFEs) of the reactants and products. BDFEs can be analyzed as sums of electron and proton transfer steps and can therefore be obtained from pK a and E° values. Even though MS-CPET reactions do not make and break H–X bonds in the same way as HAT, the same thermochemical description can be used with the introduction of an effective BDFE (BDFEeff). The BDFEeff of a reductant/acid pair is the free energy of that pair to form H•, which can be obtained from pK a and E° values in an analogous fashion to a standard BDFE. When the PCET thermochemistry is known, HAT and PCET rate constants can be understood and often predicted using linear free energy relationships (the Brønsted catalysis law) and Marcus theory type approaches. After this background, we walk the reader through a continuum of PCET reactivity. Our journey begins with a study of metal-mediated HAT from hydrocarbon substrates to a metal-oxo complex and travels to the MS-CPET end of the reactivity spectrum, involving the transfer of H+ and e – from the hydroxylamine TEMPOH to two completely
ISSN:0001-4842
1520-4898
DOI:10.1021/acs.accounts.8b00319