Loading…

Antibacterial isoamphipathic oligomers highlight the importance of multimeric lipid aggregation for antibacterial potency

Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. N...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2018-01, Vol.1 (1), p.220-220, Article 220
Main Authors: Brown, Joseph S., Mohamed, Zeinab J., Artim, Christine M., Thornlow, Dana N., Hassler, Joseph F., Rigoglioso, Vincent P., Daniel, Susan, Alabi, Christopher A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique ~ 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treated Staphylococcus aureus mimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function. Joseph Brown et al. use oligothioetheramides (oligo TEAs) to show that multimeric lipid aggregation in Staphylococcus aureus mimetic membranes correlates with the biological activity of oligoTEAs. These results may explain why antimicrobial peptides with identical cationic charge and hydrophobicity show different biological activity.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-018-0230-4