Loading…

Sensorless adaptive optics multimodal en-face small animal retinal imaging

Vision researchers often use small animals due to the availability of many transgenic strains that model human diseases or express biomarkers. Adaptive optics (AO) enables non-invasive single-cell imaging in a living animal but often results in high system complexity. Sensorless AO (SAO) can provide...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical optics express 2019-01, Vol.10 (1), p.252-267
Main Authors: Wahl, Daniel J, Ng, Ringo, Ju, Myeong Jin, Jian, Yifan, Sarunic, Marinko V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vision researchers often use small animals due to the availability of many transgenic strains that model human diseases or express biomarkers. Adaptive optics (AO) enables non-invasive single-cell imaging in a living animal but often results in high system complexity. Sensorless AO (SAO) can provide depth-resolved aberration correction with low system complexity. We present a multi-modal sensorless AO retina imaging system that includes optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy (SLO), and fluorescence detection. We present a compact lens-based imaging system design that allows for a 50-degree maximum field of view (FOV), which can be reduced to the region of interest to perform SAO with the modality of choice. The system performance was demonstrated on wild type mice (C57BL/6J), and transgenic mice with GFP labeled cells. SAO SLO was used for imaging microglia (Cx3cr1-GFP) over ~1 hour, where dynamics of the microglia branches were clearly observed. Our results also include volumetric cellular imaging of microglia throughout the inner retina.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.10.000252