Loading…

Assessing sub-cellular resolution in spatial proteomics experiments

The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in chemical biology 2019-02, Vol.48, p.123-149
Main Authors: Gatto, Laurent, Breckels, Lisa M., Lilley, Kathryn S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sub-cellular localisation of a protein is vital in defining its function, and a protein's mis-localisation is known to lead to adverse effect. As a result, numerous experimental techniques and datasets have been published, with the aim of deciphering the localisation of proteins at various scales and resolutions, including high profile mass spectrometry-based efforts. Here, we present a meta-analysis assessing and comparing the sub-cellular resolution of 29 such mass spectrometry-based spatial proteomics experiments using a newly developed tool termed QSep. Our goal is to provide a simple quantitative report of how well spatial proteomics resolve the sub-cellular niches they describe to inform and guide developers and users of such methods.
ISSN:1367-5931
1879-0402
DOI:10.1016/j.cbpa.2018.11.015