Loading…

Interdecadal variability in pan-Pacific and global SST, revisited

Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the inte...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2019-02, Vol.52 (3-4), p.2145-2157
Main Authors: Tung, Ka-Kit, Chen, Xianyao, Zhou, Jiansong, Li, King-Fai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893
cites cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893
container_end_page 2157
container_issue 3-4
container_start_page 2145
container_title Climate dynamics
container_volume 52
creator Tung, Ka-Kit
Chen, Xianyao
Zhou, Jiansong
Li, King-Fai
description Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.
doi_str_mv 10.1007/s00382-018-4240-1
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A578112411</galeid><sourcerecordid>A578112411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModq3-AG9kQBAFR08-Jh83wlL8WCgobr0OmUx2NyWb2SYzi_33ZphaW0HwIgRynvOenJcXoecY3mEA8T4DUElqwLJmhEGNH6AFZrS8SMUeogUoCrVoRHOCnuR8CYAZF-QxOqGgGs6AL9ByFQeXOmdNZ0J1NMmb1gc_XFc-VgcT62_G-o23lYldtQ19W6j1-uJtldzRZz-47il6tDEhu2c39yn68enjxdmX-vzr59XZ8ry2DZdDTWyrWsol2UiuhCSgBLXAJLOKU2Kk7TphRDnGSsGsU2AstQqr1rGypaKn6MOsexjbveusi0MyQR-S35t0rXvj9f1K9Du97Y-aM0zLnCLw-kYg9Vejy4Pe-2xdCCa6fsyakIYSiTmn_4FCw3ADalJ9-Rd62Y8pFic0AYYVJ0JMn38zU1sTnPbR9sX2n8PWjDnr1fq7XjZCYkwYxoV9dYfdOROGXe7DOPg-5vsgnkGb-pyT29yagUFPAdFzQHQJiJ4CoqeeF3ddvO34nYgCkBnIpRS3Lv3Z59-qvwAYtsJ1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041962779</pqid></control><display><type>article</type><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><source>Springer Nature</source><creator>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</creator><creatorcontrib>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</creatorcontrib><description>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-018-4240-1</identifier><identifier>PMID: 30956406</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applied mathematics ; Atlantic Oscillation ; climate ; Climate change ; Climatology ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Empirical analysis ; Frequency dependence ; Frequency modulation ; Geophysics/Geodesy ; Global temperatures ; Global warming ; Interdecadal variability ; Laboratories ; Low frequencies ; Low pass filters ; Mathematical problems ; Ocean temperature ; Oceanography ; Orthogonal functions ; Pacific Decadal Oscillation ; Sea surface ; Southern Oscillation ; Statistical analysis ; Surface temperature ; Variability</subject><ispartof>Climate dynamics, 2019-02, Vol.52 (3-4), p.2145-2157</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</citedby><cites>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</cites><orcidid>0000-0001-9825-5295 ; 0000-0003-0150-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30956406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Ka-Kit</creatorcontrib><creatorcontrib>Chen, Xianyao</creatorcontrib><creatorcontrib>Zhou, Jiansong</creatorcontrib><creatorcontrib>Li, King-Fai</creatorcontrib><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><addtitle>Clim Dyn</addtitle><description>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Atlantic Oscillation</subject><subject>climate</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Empirical analysis</subject><subject>Frequency dependence</subject><subject>Frequency modulation</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Interdecadal variability</subject><subject>Laboratories</subject><subject>Low frequencies</subject><subject>Low pass filters</subject><subject>Mathematical problems</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Orthogonal functions</subject><subject>Pacific Decadal Oscillation</subject><subject>Sea surface</subject><subject>Southern Oscillation</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Variability</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhoModq3-AG9kQBAFR08-Jh83wlL8WCgobr0OmUx2NyWb2SYzi_33ZphaW0HwIgRynvOenJcXoecY3mEA8T4DUElqwLJmhEGNH6AFZrS8SMUeogUoCrVoRHOCnuR8CYAZF-QxOqGgGs6AL9ByFQeXOmdNZ0J1NMmb1gc_XFc-VgcT62_G-o23lYldtQ19W6j1-uJtldzRZz-47il6tDEhu2c39yn68enjxdmX-vzr59XZ8ry2DZdDTWyrWsol2UiuhCSgBLXAJLOKU2Kk7TphRDnGSsGsU2AstQqr1rGypaKn6MOsexjbveusi0MyQR-S35t0rXvj9f1K9Du97Y-aM0zLnCLw-kYg9Vejy4Pe-2xdCCa6fsyakIYSiTmn_4FCw3ADalJ9-Rd62Y8pFic0AYYVJ0JMn38zU1sTnPbR9sX2n8PWjDnr1fq7XjZCYkwYxoV9dYfdOROGXe7DOPg-5vsgnkGb-pyT29yagUFPAdFzQHQJiJ4CoqeeF3ddvO34nYgCkBnIpRS3Lv3Z59-qvwAYtsJ1</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Tung, Ka-Kit</creator><creator>Chen, Xianyao</creator><creator>Zhou, Jiansong</creator><creator>Li, King-Fai</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9825-5295</orcidid><orcidid>https://orcid.org/0000-0003-0150-2910</orcidid></search><sort><creationdate>20190201</creationdate><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><author>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Atlantic Oscillation</topic><topic>climate</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Empirical analysis</topic><topic>Frequency dependence</topic><topic>Frequency modulation</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Interdecadal variability</topic><topic>Laboratories</topic><topic>Low frequencies</topic><topic>Low pass filters</topic><topic>Mathematical problems</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Orthogonal functions</topic><topic>Pacific Decadal Oscillation</topic><topic>Sea surface</topic><topic>Southern Oscillation</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Ka-Kit</creatorcontrib><creatorcontrib>Chen, Xianyao</creatorcontrib><creatorcontrib>Zhou, Jiansong</creatorcontrib><creatorcontrib>Li, King-Fai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tung, Ka-Kit</au><au>Chen, Xianyao</au><au>Zhou, Jiansong</au><au>Li, King-Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal variability in pan-Pacific and global SST, revisited</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><addtitle>Clim Dyn</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>52</volume><issue>3-4</issue><spage>2145</spage><epage>2157</epage><pages>2145-2157</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30956406</pmid><doi>10.1007/s00382-018-4240-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9825-5295</orcidid><orcidid>https://orcid.org/0000-0003-0150-2910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2019-02, Vol.52 (3-4), p.2145-2157
issn 0930-7575
1432-0894
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413484
source Springer Nature
subjects Analysis
Applied mathematics
Atlantic Oscillation
climate
Climate change
Climatology
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Empirical analysis
Frequency dependence
Frequency modulation
Geophysics/Geodesy
Global temperatures
Global warming
Interdecadal variability
Laboratories
Low frequencies
Low pass filters
Mathematical problems
Ocean temperature
Oceanography
Orthogonal functions
Pacific Decadal Oscillation
Sea surface
Southern Oscillation
Statistical analysis
Surface temperature
Variability
title Interdecadal variability in pan-Pacific and global SST, revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T05%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20variability%20in%20pan-Pacific%20and%20global%20SST,%20revisited&rft.jtitle=Climate%20dynamics&rft.au=Tung,%20Ka-Kit&rft.date=2019-02-01&rft.volume=52&rft.issue=3-4&rft.spage=2145&rft.epage=2157&rft.pages=2145-2157&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-018-4240-1&rft_dat=%3Cgale_pubme%3EA578112411%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041962779&rft_id=info:pmid/30956406&rft_galeid=A578112411&rfr_iscdi=true