Loading…
Interdecadal variability in pan-Pacific and global SST, revisited
Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the inte...
Saved in:
Published in: | Climate dynamics 2019-02, Vol.52 (3-4), p.2145-2157 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893 |
---|---|
cites | cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893 |
container_end_page | 2157 |
container_issue | 3-4 |
container_start_page | 2145 |
container_title | Climate dynamics |
container_volume | 52 |
creator | Tung, Ka-Kit Chen, Xianyao Zhou, Jiansong Li, King-Fai |
description | Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean. |
doi_str_mv | 10.1007/s00382-018-4240-1 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A578112411</galeid><sourcerecordid>A578112411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModq3-AG9kQBAFR08-Jh83wlL8WCgobr0OmUx2NyWb2SYzi_33ZphaW0HwIgRynvOenJcXoecY3mEA8T4DUElqwLJmhEGNH6AFZrS8SMUeogUoCrVoRHOCnuR8CYAZF-QxOqGgGs6AL9ByFQeXOmdNZ0J1NMmb1gc_XFc-VgcT62_G-o23lYldtQ19W6j1-uJtldzRZz-47il6tDEhu2c39yn68enjxdmX-vzr59XZ8ry2DZdDTWyrWsol2UiuhCSgBLXAJLOKU2Kk7TphRDnGSsGsU2AstQqr1rGypaKn6MOsexjbveusi0MyQR-S35t0rXvj9f1K9Du97Y-aM0zLnCLw-kYg9Vejy4Pe-2xdCCa6fsyakIYSiTmn_4FCw3ADalJ9-Rd62Y8pFic0AYYVJ0JMn38zU1sTnPbR9sX2n8PWjDnr1fq7XjZCYkwYxoV9dYfdOROGXe7DOPg-5vsgnkGb-pyT29yagUFPAdFzQHQJiJ4CoqeeF3ddvO34nYgCkBnIpRS3Lv3Z59-qvwAYtsJ1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041962779</pqid></control><display><type>article</type><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><source>Springer Nature</source><creator>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</creator><creatorcontrib>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</creatorcontrib><description>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-018-4240-1</identifier><identifier>PMID: 30956406</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applied mathematics ; Atlantic Oscillation ; climate ; Climate change ; Climatology ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Empirical analysis ; Frequency dependence ; Frequency modulation ; Geophysics/Geodesy ; Global temperatures ; Global warming ; Interdecadal variability ; Laboratories ; Low frequencies ; Low pass filters ; Mathematical problems ; Ocean temperature ; Oceanography ; Orthogonal functions ; Pacific Decadal Oscillation ; Sea surface ; Southern Oscillation ; Statistical analysis ; Surface temperature ; Variability</subject><ispartof>Climate dynamics, 2019-02, Vol.52 (3-4), p.2145-2157</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</citedby><cites>FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</cites><orcidid>0000-0001-9825-5295 ; 0000-0003-0150-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30956406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Ka-Kit</creatorcontrib><creatorcontrib>Chen, Xianyao</creatorcontrib><creatorcontrib>Zhou, Jiansong</creatorcontrib><creatorcontrib>Li, King-Fai</creatorcontrib><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><addtitle>Clim Dyn</addtitle><description>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</description><subject>Analysis</subject><subject>Applied mathematics</subject><subject>Atlantic Oscillation</subject><subject>climate</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Empirical analysis</subject><subject>Frequency dependence</subject><subject>Frequency modulation</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Interdecadal variability</subject><subject>Laboratories</subject><subject>Low frequencies</subject><subject>Low pass filters</subject><subject>Mathematical problems</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Orthogonal functions</subject><subject>Pacific Decadal Oscillation</subject><subject>Sea surface</subject><subject>Southern Oscillation</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><subject>Variability</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhoModq3-AG9kQBAFR08-Jh83wlL8WCgobr0OmUx2NyWb2SYzi_33ZphaW0HwIgRynvOenJcXoecY3mEA8T4DUElqwLJmhEGNH6AFZrS8SMUeogUoCrVoRHOCnuR8CYAZF-QxOqGgGs6AL9ByFQeXOmdNZ0J1NMmb1gc_XFc-VgcT62_G-o23lYldtQ19W6j1-uJtldzRZz-47il6tDEhu2c39yn68enjxdmX-vzr59XZ8ry2DZdDTWyrWsol2UiuhCSgBLXAJLOKU2Kk7TphRDnGSsGsU2AstQqr1rGypaKn6MOsexjbveusi0MyQR-S35t0rXvj9f1K9Du97Y-aM0zLnCLw-kYg9Vejy4Pe-2xdCCa6fsyakIYSiTmn_4FCw3ADalJ9-Rd62Y8pFic0AYYVJ0JMn38zU1sTnPbR9sX2n8PWjDnr1fq7XjZCYkwYxoV9dYfdOROGXe7DOPg-5vsgnkGb-pyT29yagUFPAdFzQHQJiJ4CoqeeF3ddvO34nYgCkBnIpRS3Lv3Z59-qvwAYtsJ1</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Tung, Ka-Kit</creator><creator>Chen, Xianyao</creator><creator>Zhou, Jiansong</creator><creator>Li, King-Fai</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9825-5295</orcidid><orcidid>https://orcid.org/0000-0003-0150-2910</orcidid></search><sort><creationdate>20190201</creationdate><title>Interdecadal variability in pan-Pacific and global SST, revisited</title><author>Tung, Ka-Kit ; Chen, Xianyao ; Zhou, Jiansong ; Li, King-Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Applied mathematics</topic><topic>Atlantic Oscillation</topic><topic>climate</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Empirical analysis</topic><topic>Frequency dependence</topic><topic>Frequency modulation</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Interdecadal variability</topic><topic>Laboratories</topic><topic>Low frequencies</topic><topic>Low pass filters</topic><topic>Mathematical problems</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Orthogonal functions</topic><topic>Pacific Decadal Oscillation</topic><topic>Sea surface</topic><topic>Southern Oscillation</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Ka-Kit</creatorcontrib><creatorcontrib>Chen, Xianyao</creatorcontrib><creatorcontrib>Zhou, Jiansong</creatorcontrib><creatorcontrib>Li, King-Fai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tung, Ka-Kit</au><au>Chen, Xianyao</au><au>Zhou, Jiansong</au><au>Li, King-Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdecadal variability in pan-Pacific and global SST, revisited</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><addtitle>Clim Dyn</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>52</volume><issue>3-4</issue><spage>2145</spage><epage>2157</epage><pages>2145-2157</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Interest in the “Interdecadal Pacific Oscillation (IPO)” in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal “Pacific” Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30956406</pmid><doi>10.1007/s00382-018-4240-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9825-5295</orcidid><orcidid>https://orcid.org/0000-0003-0150-2910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2019-02, Vol.52 (3-4), p.2145-2157 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413484 |
source | Springer Nature |
subjects | Analysis Applied mathematics Atlantic Oscillation climate Climate change Climatology Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Empirical analysis Frequency dependence Frequency modulation Geophysics/Geodesy Global temperatures Global warming Interdecadal variability Laboratories Low frequencies Low pass filters Mathematical problems Ocean temperature Oceanography Orthogonal functions Pacific Decadal Oscillation Sea surface Southern Oscillation Statistical analysis Surface temperature Variability |
title | Interdecadal variability in pan-Pacific and global SST, revisited |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T05%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdecadal%20variability%20in%20pan-Pacific%20and%20global%20SST,%20revisited&rft.jtitle=Climate%20dynamics&rft.au=Tung,%20Ka-Kit&rft.date=2019-02-01&rft.volume=52&rft.issue=3-4&rft.spage=2145&rft.epage=2157&rft.pages=2145-2157&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-018-4240-1&rft_dat=%3Cgale_pubme%3EA578112411%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-2cb9b3682f8697820973c0484c9632a8cdd7a7d7aac874ce90ac3c919be403893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041962779&rft_id=info:pmid/30956406&rft_galeid=A578112411&rfr_iscdi=true |