Loading…
Why is chlorophyll b only used in light-harvesting systems?
Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls a and b . The two pigments form light-harvesting Chl a / b -binding protein complexes (LHC), which absorb...
Saved in:
Published in: | Journal of plant research 2018-11, Vol.131 (6), p.961-972 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls
a
and
b
. The two pigments form light-harvesting Chl
a
/
b
-binding protein complexes (LHC), which absorb most of the light. The peak wavelengths of the absorption spectra of Chls
a
and
b
differ by c. 20 nm, and the ratio between them (the
a
/
b
ratio) is an important determinant of the light absorption efficiency of photosynthesis (i.e., the antenna size). Here, we investigated why Chl
b
is used in LHCs rather than other light-absorbing pigments that can be used for photosynthesis by considering the solar radiation spectrum under field conditions. We found that direct and diffuse solar radiation (PAR
dir
and PAR
diff
, respectively) have different spectral distributions, showing maximum spectral photon flux densities (SPFD) at c. 680 and 460 nm, respectively, during the daytime. The spectral absorbance spectra of Chls
a
and
b
functioned complementary to each other, and the absorbance peaks of Chl
b
were nested within those of Chl
a
. The absorption peak in the short wavelength region of Chl
b
in the proteinaceous environment occurred at c. 460 nm, making it suitable for absorbing the PAR
diff
, but not suitable for avoiding the high spectral irradiance (SIR) waveband of PAR
dir
. In contrast, Chl
a
effectively avoided the high SPFD and/or high SIR waveband. The absorption spectra of photosynthetic complexes were negatively correlated with SPFD spectra, but LHCs with low
a
/
b
ratios were more positively correlated with SIR spectra. These findings indicate that the spectra of the photosynthetic pigments and constructed photosystems and antenna proteins significantly align with the terrestrial solar spectra to allow the safe and efficient use of solar radiation. |
---|---|
ISSN: | 0918-9440 1618-0860 |
DOI: | 10.1007/s10265-018-1052-7 |