Loading…

Distinguishing between sea turtle foraging areas using stable isotopes from commensal barnacle shells

Understanding the movement behaviour of marine megafauna within and between habitats is valuable for informing conservation management, particularly for threatened species. Stable isotope analyses of soft-tissues have been used to understand these parameters in sea turtles, usually relying on concur...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-04, Vol.9 (1), p.6565-6565, Article 6565
Main Authors: Pearson, Ryan M., van de Merwe, Jason P., Gagan, Michael K., Limpus, Colin J., Connolly, Rod M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the movement behaviour of marine megafauna within and between habitats is valuable for informing conservation management, particularly for threatened species. Stable isotope analyses of soft-tissues have been used to understand these parameters in sea turtles, usually relying on concurrent satellite telemetry at high cost. Barnacles that grow on sea turtles have been shown to offer a source of isotopic history that reflects the temperature and salinity of the water in which the host animal has been. We used a novel method that combines barnacle growth rates and stable isotope analysis of barnacle shells (δ 18 O and δ 13 C) as predictors of home area for foraging sea turtles. We showed high success rates in assigning turtles to foraging areas in Queensland, Australia, based on isotope ratios from the shells of the barnacles that were attached to them (86–94% when areas were separated by >400 km). This method could be used to understand foraging distribution, migration distances and the habitat use of nesting turtles throughout the world, benefiting conservation and management of these threatened species and may be applied to other taxa that carry hitchhiking barnacles through oceans or estuaries.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-42983-4