Loading…
Robust Neuritogenesis‐Promoting Activity by Bis(heptyl)‐Cognitin Through the Activation of alpha7‐Nicotinic Acetylcholine Receptor/ERK Pathway
Summary Aims Neurodegenerative disorders are caused by progressive neuronal loss in the brain, and hence, compounds that could promote neuritogenesis may have therapeutic values. In this study, the effects of bis(heptyl)‐cognitin (B7C), a multifunctional dimer, on neurite outgrowth were investigated...
Saved in:
Published in: | CNS neuroscience & therapeutics 2015-06, Vol.21 (6), p.520-529 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Aims
Neurodegenerative disorders are caused by progressive neuronal loss in the brain, and hence, compounds that could promote neuritogenesis may have therapeutic values. In this study, the effects of bis(heptyl)‐cognitin (B7C), a multifunctional dimer, on neurite outgrowth were investigated in both PC12 cells and primary cortical neurons.
Methods
Immunocytochemical staining was used to evaluate the proneuritogenesis effects, and Western blot and short hairpin RNA assays were applied to explore the underlying mechanisms.
Results
B7C (0.1–0.5 μM) induced robust neurite outgrowth in PC12 cells, as evidenced by the neurite‐bearing morphology and upregulation of growth‐associated protein‐43 expression. In addition, B7C markedly promoted neurite outgrowth in primary cortical neurons as shown by the increase in the length of β‐III‐tubulin‐positive neurites. Furthermore, B7C rapidly increased ERK phosphorylation. Specific inhibitors of alpha7‐nicotinic acetylcholine receptor (α7‐nAChR) and MEK, but not those of p38 or JNK, blocked the neurite outgrowth as well as ERK phosphorylation induced by B7C. Most importantly, genetic depletion of α7‐nAChR significantly abolished B7C‐induced neurite outgrowth in PC12 cells.
Conclusion
B7C promoted neurite outgrowth through the activation of α7‐nAChR/ERK pathway, which offers novel insight into the potential application of B7C in the treatment of neurodegenerative disorders. |
---|---|
ISSN: | 1755-5930 1755-5949 |
DOI: | 10.1111/cns.12401 |