Loading…
Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold
This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals...
Saved in:
Published in: | Scientific reports 2019-05, Vol.9 (1), p.7960-7960, Article 7960 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63 |
container_end_page | 7960 |
container_issue | 1 |
container_start_page | 7960 |
container_title | Scientific reports |
container_volume | 9 |
creator | Wang, Yaozong Sun, Naikun Zhang, Yinlong Zhao, Bin Zhang, Zheyi Zhou, Xu Zhou, Yuanyuan Liu, Hongyi Zhang, Ying Liu, Jianguo |
description | This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm
−1
occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs)
in vitro
and expression of the osteogenic related genes
RUNX2
,
OCN
, and
COL1A1
was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering. |
doi_str_mv | 10.1038/s41598-019-44478-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231407795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</originalsourceid><addsrcrecordid>eNp9UUtPFTEYbYxGCPIHXJgmbtxUps9pNyaEIJhAIEHXTW_bubdkph3bGRLX_nE7DCCysJs-vvPoyQHgPW4-44bKo8IwVxI1WCHGWCuRfAX2ScM4IpSQ18_Oe-CwlNumLk4Uw-ot2KMYUykF3ge_T-POROsdTGXyaetjsHDMqQ-dz2YKKUITHXShq3cfp7C-pQ7u5sHUoQtjKh45n8NdVakiA7S-7wtcqHBMOc0FRnR-fHR9doMuoU1DZYTJw2JN16XevQNvOtMXf_iwH4AfX0-_n5yji6uzbyfHF8hyjCckjMUNc06JVm3sRirnLSeWi42TpsbxQkiLOeOUtoS1AnNuFfWKCayqkaAH4MuqO86bwTtb42TT6zGHweRfOpmg_53EsNPbdKcFp1LQReDTg0BOP2dfJj2EsoQ10deUmhCKJa_WvEI_voDepjnHGu8exZq2VQuKrCibUynZd0-fwY1eatZrzbrWrO9r1rKSPjyP8UR5LLUC6AoodRS3Pv_1_o_sH7KwtJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231407795</pqid></control><display><type>article</type><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</creator><creatorcontrib>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</creatorcontrib><description>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm
−1
occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs)
in vitro
and expression of the osteogenic related genes
RUNX2
,
OCN
, and
COL1A1
was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44478-8</identifier><identifier>PMID: 31138861</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/107 ; 38/77 ; 631/61/2320 ; 639/925/352/1061 ; Apatite ; Biocompatibility ; Biomarkers - metabolism ; Calorimetry ; Cbfa-1 protein ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Collagen (type I) ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Compressibility ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Decanoates - chemistry ; Differential scanning calorimetry ; Durapatite - chemistry ; Durapatite - pharmacology ; Gene Expression ; Glycerol ; Glycerol - analogs & derivatives ; Glycerol - chemistry ; Humanities and Social Sciences ; Humans ; Hydroxyapatite ; Maleic Anhydrides - chemistry ; Materials Testing ; Mechanical properties ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteogenesis - drug effects ; Osteogenesis - genetics ; Polymers - chemistry ; Pore size ; Porosity ; Primary Cell Culture ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Stem cells ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Transition temperatures</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7960-7960, Article 7960</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</citedby><cites>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</cites><orcidid>0000-0002-8209-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2231407795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2231407795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yaozong</creatorcontrib><creatorcontrib>Sun, Naikun</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Zhang, Zheyi</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zhou, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Hongyi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm
−1
occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs)
in vitro
and expression of the osteogenic related genes
RUNX2
,
OCN
, and
COL1A1
was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</description><subject>13/100</subject><subject>13/107</subject><subject>38/77</subject><subject>631/61/2320</subject><subject>639/925/352/1061</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biomarkers - metabolism</subject><subject>Calorimetry</subject><subject>Cbfa-1 protein</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Compressibility</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Decanoates - chemistry</subject><subject>Differential scanning calorimetry</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Gene Expression</subject><subject>Glycerol</subject><subject>Glycerol - analogs & derivatives</subject><subject>Glycerol - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Maleic Anhydrides - chemistry</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - genetics</subject><subject>Polymers - chemistry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Primary Cell Culture</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transition temperatures</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UUtPFTEYbYxGCPIHXJgmbtxUps9pNyaEIJhAIEHXTW_bubdkph3bGRLX_nE7DCCysJs-vvPoyQHgPW4-44bKo8IwVxI1WCHGWCuRfAX2ScM4IpSQ18_Oe-CwlNumLk4Uw-ot2KMYUykF3ge_T-POROsdTGXyaetjsHDMqQ-dz2YKKUITHXShq3cfp7C-pQ7u5sHUoQtjKh45n8NdVakiA7S-7wtcqHBMOc0FRnR-fHR9doMuoU1DZYTJw2JN16XevQNvOtMXf_iwH4AfX0-_n5yji6uzbyfHF8hyjCckjMUNc06JVm3sRirnLSeWi42TpsbxQkiLOeOUtoS1AnNuFfWKCayqkaAH4MuqO86bwTtb42TT6zGHweRfOpmg_53EsNPbdKcFp1LQReDTg0BOP2dfJj2EsoQ10deUmhCKJa_WvEI_voDepjnHGu8exZq2VQuKrCibUynZd0-fwY1eatZrzbrWrO9r1rKSPjyP8UR5LLUC6AoodRS3Pv_1_o_sH7KwtJk</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Wang, Yaozong</creator><creator>Sun, Naikun</creator><creator>Zhang, Yinlong</creator><creator>Zhao, Bin</creator><creator>Zhang, Zheyi</creator><creator>Zhou, Xu</creator><creator>Zhou, Yuanyuan</creator><creator>Liu, Hongyi</creator><creator>Zhang, Ying</creator><creator>Liu, Jianguo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8209-8966</orcidid></search><sort><creationdate>20190528</creationdate><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><author>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/107</topic><topic>38/77</topic><topic>631/61/2320</topic><topic>639/925/352/1061</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biomarkers - metabolism</topic><topic>Calorimetry</topic><topic>Cbfa-1 protein</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Compressibility</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Decanoates - chemistry</topic><topic>Differential scanning calorimetry</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Gene Expression</topic><topic>Glycerol</topic><topic>Glycerol - analogs & derivatives</topic><topic>Glycerol - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Maleic Anhydrides - chemistry</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - genetics</topic><topic>Polymers - chemistry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Primary Cell Culture</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaozong</creatorcontrib><creatorcontrib>Sun, Naikun</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Zhang, Zheyi</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zhou, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Hongyi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaozong</au><au>Sun, Naikun</au><au>Zhang, Yinlong</au><au>Zhao, Bin</au><au>Zhang, Zheyi</au><au>Zhou, Xu</au><au>Zhou, Yuanyuan</au><au>Liu, Hongyi</au><au>Zhang, Ying</au><au>Liu, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7960</spage><epage>7960</epage><pages>7960-7960</pages><artnum>7960</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm
−1
occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs)
in vitro
and expression of the osteogenic related genes
RUNX2
,
OCN
, and
COL1A1
was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31138861</pmid><doi>10.1038/s41598-019-44478-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8209-8966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-05, Vol.9 (1), p.7960-7960, Article 7960 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538636 |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/100 13/107 38/77 631/61/2320 639/925/352/1061 Apatite Biocompatibility Biomarkers - metabolism Calorimetry Cbfa-1 protein Cell Adhesion - drug effects Cell Differentiation - drug effects Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Collagen (type I) Collagen Type I - genetics Collagen Type I - metabolism Compressibility Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Decanoates - chemistry Differential scanning calorimetry Durapatite - chemistry Durapatite - pharmacology Gene Expression Glycerol Glycerol - analogs & derivatives Glycerol - chemistry Humanities and Social Sciences Humans Hydroxyapatite Maleic Anhydrides - chemistry Materials Testing Mechanical properties Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism multidisciplinary NMR Nuclear magnetic resonance Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Osteocalcin - genetics Osteocalcin - metabolism Osteogenesis - drug effects Osteogenesis - genetics Polymers - chemistry Pore size Porosity Primary Cell Culture Scanning electron microscopy Science Science (multidisciplinary) Stem cells Tissue engineering Tissue Engineering - methods Tissue Scaffolds Transition temperatures |
title | Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20osteogenic%20proliferation%20and%20differentiation%20of%20human%20adipose-derived%20stem%20cells%20on%20a%20porous%20n-HA/PGS-M%20composite%20scaffold&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yaozong&rft.date=2019-05-28&rft.volume=9&rft.issue=1&rft.spage=7960&rft.epage=7960&rft.pages=7960-7960&rft.artnum=7960&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44478-8&rft_dat=%3Cproquest_pubme%3E2231407795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231407795&rft_id=info:pmid/31138861&rfr_iscdi=true |