Loading…

Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold

This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-05, Vol.9 (1), p.7960-7960, Article 7960
Main Authors: Wang, Yaozong, Sun, Naikun, Zhang, Yinlong, Zhao, Bin, Zhang, Zheyi, Zhou, Xu, Zhou, Yuanyuan, Liu, Hongyi, Zhang, Ying, Liu, Jianguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63
cites cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63
container_end_page 7960
container_issue 1
container_start_page 7960
container_title Scientific reports
container_volume 9
creator Wang, Yaozong
Sun, Naikun
Zhang, Yinlong
Zhao, Bin
Zhang, Zheyi
Zhou, Xu
Zhou, Yuanyuan
Liu, Hongyi
Zhang, Ying
Liu, Jianguo
description This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm −1 occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs) in vitro and expression of the osteogenic related genes RUNX2 , OCN , and COL1A1 was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.
doi_str_mv 10.1038/s41598-019-44478-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231407795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</originalsourceid><addsrcrecordid>eNp9UUtPFTEYbYxGCPIHXJgmbtxUps9pNyaEIJhAIEHXTW_bubdkph3bGRLX_nE7DCCysJs-vvPoyQHgPW4-44bKo8IwVxI1WCHGWCuRfAX2ScM4IpSQ18_Oe-CwlNumLk4Uw-ot2KMYUykF3ge_T-POROsdTGXyaetjsHDMqQ-dz2YKKUITHXShq3cfp7C-pQ7u5sHUoQtjKh45n8NdVakiA7S-7wtcqHBMOc0FRnR-fHR9doMuoU1DZYTJw2JN16XevQNvOtMXf_iwH4AfX0-_n5yji6uzbyfHF8hyjCckjMUNc06JVm3sRirnLSeWi42TpsbxQkiLOeOUtoS1AnNuFfWKCayqkaAH4MuqO86bwTtb42TT6zGHweRfOpmg_53EsNPbdKcFp1LQReDTg0BOP2dfJj2EsoQ10deUmhCKJa_WvEI_voDepjnHGu8exZq2VQuKrCibUynZd0-fwY1eatZrzbrWrO9r1rKSPjyP8UR5LLUC6AoodRS3Pv_1_o_sH7KwtJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231407795</pqid></control><display><type>article</type><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</creator><creatorcontrib>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</creatorcontrib><description>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm −1 occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs) in vitro and expression of the osteogenic related genes RUNX2 , OCN , and COL1A1 was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44478-8</identifier><identifier>PMID: 31138861</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/107 ; 38/77 ; 631/61/2320 ; 639/925/352/1061 ; Apatite ; Biocompatibility ; Biomarkers - metabolism ; Calorimetry ; Cbfa-1 protein ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell proliferation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Collagen (type I) ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Compressibility ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Decanoates - chemistry ; Differential scanning calorimetry ; Durapatite - chemistry ; Durapatite - pharmacology ; Gene Expression ; Glycerol ; Glycerol - analogs &amp; derivatives ; Glycerol - chemistry ; Humanities and Social Sciences ; Humans ; Hydroxyapatite ; Maleic Anhydrides - chemistry ; Materials Testing ; Mechanical properties ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteogenesis - drug effects ; Osteogenesis - genetics ; Polymers - chemistry ; Pore size ; Porosity ; Primary Cell Culture ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Stem cells ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Transition temperatures</subject><ispartof>Scientific reports, 2019-05, Vol.9 (1), p.7960-7960, Article 7960</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</citedby><cites>FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</cites><orcidid>0000-0002-8209-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2231407795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2231407795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31138861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yaozong</creatorcontrib><creatorcontrib>Sun, Naikun</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Zhang, Zheyi</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zhou, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Hongyi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm −1 occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs) in vitro and expression of the osteogenic related genes RUNX2 , OCN , and COL1A1 was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</description><subject>13/100</subject><subject>13/107</subject><subject>38/77</subject><subject>631/61/2320</subject><subject>639/925/352/1061</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biomarkers - metabolism</subject><subject>Calorimetry</subject><subject>Cbfa-1 protein</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Compressibility</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Decanoates - chemistry</subject><subject>Differential scanning calorimetry</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Gene Expression</subject><subject>Glycerol</subject><subject>Glycerol - analogs &amp; derivatives</subject><subject>Glycerol - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Maleic Anhydrides - chemistry</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteogenesis - drug effects</subject><subject>Osteogenesis - genetics</subject><subject>Polymers - chemistry</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Primary Cell Culture</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transition temperatures</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UUtPFTEYbYxGCPIHXJgmbtxUps9pNyaEIJhAIEHXTW_bubdkph3bGRLX_nE7DCCysJs-vvPoyQHgPW4-44bKo8IwVxI1WCHGWCuRfAX2ScM4IpSQ18_Oe-CwlNumLk4Uw-ot2KMYUykF3ge_T-POROsdTGXyaetjsHDMqQ-dz2YKKUITHXShq3cfp7C-pQ7u5sHUoQtjKh45n8NdVakiA7S-7wtcqHBMOc0FRnR-fHR9doMuoU1DZYTJw2JN16XevQNvOtMXf_iwH4AfX0-_n5yji6uzbyfHF8hyjCckjMUNc06JVm3sRirnLSeWi42TpsbxQkiLOeOUtoS1AnNuFfWKCayqkaAH4MuqO86bwTtb42TT6zGHweRfOpmg_53EsNPbdKcFp1LQReDTg0BOP2dfJj2EsoQ10deUmhCKJa_WvEI_voDepjnHGu8exZq2VQuKrCibUynZd0-fwY1eatZrzbrWrO9r1rKSPjyP8UR5LLUC6AoodRS3Pv_1_o_sH7KwtJk</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Wang, Yaozong</creator><creator>Sun, Naikun</creator><creator>Zhang, Yinlong</creator><creator>Zhao, Bin</creator><creator>Zhang, Zheyi</creator><creator>Zhou, Xu</creator><creator>Zhou, Yuanyuan</creator><creator>Liu, Hongyi</creator><creator>Zhang, Ying</creator><creator>Liu, Jianguo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8209-8966</orcidid></search><sort><creationdate>20190528</creationdate><title>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</title><author>Wang, Yaozong ; Sun, Naikun ; Zhang, Yinlong ; Zhao, Bin ; Zhang, Zheyi ; Zhou, Xu ; Zhou, Yuanyuan ; Liu, Hongyi ; Zhang, Ying ; Liu, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/107</topic><topic>38/77</topic><topic>631/61/2320</topic><topic>639/925/352/1061</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biomarkers - metabolism</topic><topic>Calorimetry</topic><topic>Cbfa-1 protein</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Compressibility</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Decanoates - chemistry</topic><topic>Differential scanning calorimetry</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Gene Expression</topic><topic>Glycerol</topic><topic>Glycerol - analogs &amp; derivatives</topic><topic>Glycerol - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Maleic Anhydrides - chemistry</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteogenesis - drug effects</topic><topic>Osteogenesis - genetics</topic><topic>Polymers - chemistry</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Primary Cell Culture</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaozong</creatorcontrib><creatorcontrib>Sun, Naikun</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Zhang, Zheyi</creatorcontrib><creatorcontrib>Zhou, Xu</creatorcontrib><creatorcontrib>Zhou, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Hongyi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yaozong</au><au>Sun, Naikun</au><au>Zhang, Yinlong</au><au>Zhao, Bin</au><au>Zhang, Zheyi</au><au>Zhou, Xu</au><au>Zhou, Yuanyuan</au><au>Liu, Hongyi</au><au>Zhang, Ying</au><au>Liu, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>7960</spage><epage>7960</epage><pages>7960-7960</pages><artnum>7960</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study explored the applicability, cellular efficacy, and osteogenic activities of porous nano-hydroxyapatite/Poly (glycerol sebacate)-grafted maleic anhydride (n-HA/PGS-g-M) composite scaffolds. Nuclear magnetic resonance (NMR) analyses indicated that approximately 43% of the hydroxide radicals in PGS were displaced by maleic anhydride. Resonance bands at 1036 cm −1 occurred in scaffolds containing nHA powders, and peak areas increased when n-HA weight increased in PGS-M-n-HA-0.4, PGS-M-n-HA-0.5, and PGS-M-n-HA-0.6 scaffolds. The n-HA/PGS-g-M composite scaffolds exhibited porous microstructure with average pore size of 150–300 µm in scanning electron microscopy (SEM) analysis. Differential scanning calorimetry (DSC) identified the glass transition temperature (Tg) as −25–30 °C, indicative of quality resilience. The modulus of compressibility increased when n-HA content increased. Interestingly, viability of human adipose-derived stem cells (hADSCs) in vitro and expression of the osteogenic related genes RUNX2 , OCN , and COL1A1 was enhanced in the n-HA/PGS-g-M composite scaffolds compared to those factors observed in PGS-g-M scaffolds. Finally, simulated body fluid (SBF) tests indicated more apatite deposits on the surface of n-HA/PGS-g-M scaffolds compared to PGS-g-M scaffolds. Overall, porous n-HA/PGS-g-M composite scaffolds possessed acceptable biocompatibility and mechanical properties, and they stimulated hADSC cell proliferation and differentiation. Given these qualities, the composite scaffolds have potential applications in bone tissue engineering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31138861</pmid><doi>10.1038/s41598-019-44478-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8209-8966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-05, Vol.9 (1), p.7960-7960, Article 7960
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538636
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 13/100
13/107
38/77
631/61/2320
639/925/352/1061
Apatite
Biocompatibility
Biomarkers - metabolism
Calorimetry
Cbfa-1 protein
Cell Adhesion - drug effects
Cell Differentiation - drug effects
Cell proliferation
Cell Proliferation - drug effects
Cell Survival - drug effects
Collagen (type I)
Collagen Type I - genetics
Collagen Type I - metabolism
Compressibility
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Decanoates - chemistry
Differential scanning calorimetry
Durapatite - chemistry
Durapatite - pharmacology
Gene Expression
Glycerol
Glycerol - analogs & derivatives
Glycerol - chemistry
Humanities and Social Sciences
Humans
Hydroxyapatite
Maleic Anhydrides - chemistry
Materials Testing
Mechanical properties
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
multidisciplinary
NMR
Nuclear magnetic resonance
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteocalcin - genetics
Osteocalcin - metabolism
Osteogenesis - drug effects
Osteogenesis - genetics
Polymers - chemistry
Pore size
Porosity
Primary Cell Culture
Scanning electron microscopy
Science
Science (multidisciplinary)
Stem cells
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
Transition temperatures
title Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20osteogenic%20proliferation%20and%20differentiation%20of%20human%20adipose-derived%20stem%20cells%20on%20a%20porous%20n-HA/PGS-M%20composite%20scaffold&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Yaozong&rft.date=2019-05-28&rft.volume=9&rft.issue=1&rft.spage=7960&rft.epage=7960&rft.pages=7960-7960&rft.artnum=7960&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44478-8&rft_dat=%3Cproquest_pubme%3E2231407795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-6ac104dd9679bcb89dec52c56bd8a388e668c15453372476155c93e94619aff63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231407795&rft_id=info:pmid/31138861&rfr_iscdi=true