Loading…

Interaction of colocalized neuropeptides: functional significance in the circadian timing system

The suprachiasmatic nucleus (SCN), which appears to act as a circadian clock, contains a subpopulation of local circuit neurons in which vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), and gastrin releasing peptide (GRP) are colocalized. To determine whether VIP, PHI, and GR...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1991-03, Vol.11 (3), p.846-851
Main Authors: Albers, HE, Liou, SY, Stopa, EG, Zoeller, RT
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The suprachiasmatic nucleus (SCN), which appears to act as a circadian clock, contains a subpopulation of local circuit neurons in which vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), and gastrin releasing peptide (GRP) are colocalized. To determine whether VIP, PHI, and GRP interact within the SCN to produce a signal important for circadian control, the behavioral and cellular effects of coadministration of these neuropeptides were investigated. Coadministration of VIP, PHI, and GRP within the SCN mimicked the phase-delaying effects of light on circadian control following in vivo microinjection and activated SCN single units recorded in vitro. These behavioral and cellular effects of coadministration of VIP, PHI, and GRP were significantly greater than administration of VIP, PHI, or GRP alone or coadministration of any 2 of these peptides. These data illustrate a new mechanism whereby multiple, colocalized neuropeptides interact in a functionally significant manner, and indicate that the interaction of VIP, PHI, and GRP may be involved in the regulation of circadian rhythms by the SCN.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.11-03-00846.1991