Loading…

A Dynamic Network Simulation of the Nematode Tap Withdrawal Circuit: Predictions Concerning Synaptic Function Using Behavioral Criteria

The nematode tap withdrawal reflex demonstrates several forms of behavioral plasticity. Although the neural connectivity that supports this behavior is identified (Integration of mechanosensory stimuli in Caenorhabditis elegans, Wicks and Rankin, 1995, J Neurosci 15:2434-2444), the neurotransmitter...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1996-06, Vol.16 (12), p.4017-4031
Main Authors: Wicks, Stephen R, Roehrig, Chris J, Rankin, Catharine H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nematode tap withdrawal reflex demonstrates several forms of behavioral plasticity. Although the neural connectivity that supports this behavior is identified (Integration of mechanosensory stimuli in Caenorhabditis elegans, Wicks and Rankin, 1995, J Neurosci 15:2434-2444), the neurotransmitter phenotypes, and hence whether the synapses in the circuit are excitatory or inhibitory, remain uncharacterized. Here we use a novel strategy to predict the polarity configuration, i.e., the array of excitatory and inhibitory connections, of the nematode tap withdrawal circuit using an anatomically and physiologically justifiable dynamic network simulation of that circuit. The output of the modeled circuit was optimized to the behavior of animals, which possessed circuits altered by surgical ablation by exhaustively enumerating an array of synaptic signs that constituted the modeled circuit. All possible polarity configurations were then compared, and a statistical analysis was used to determine whether, for a given synaptic class, a particular polarity was associated with a good fit to behavioral data. The results from four related experiments were used to predict the polarities of seven of the nine cell classes of the tap withdrawal circuit. In addition, the model was used to assess possible roles for two novel mechanosensory integration neurons: DVA and PVD.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.16-12-04017.1996