Loading…

Null Mutation of c-fos Impairs Structural and Functional Plasticities in the Kindling Model of Epilepsy

It has been suggested that expression of the immediate early gene c-fos links fleeting changes in neuronal activity to lasting modifications of neuronal structure and function in the mammalian nervous system. To test this idea, we examined behavioral and electrophysiological indices of kindling deve...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1996-06, Vol.16 (12), p.3827-3836
Main Authors: Watanabe, Yoshinori, Johnson, Randall S, Butler, Linda S, Binder, Devin K, Spiegelman, Bruce M, Papaioannou, Virginia E, McNamara, James O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been suggested that expression of the immediate early gene c-fos links fleeting changes in neuronal activity to lasting modifications of neuronal structure and function in the mammalian nervous system. To test this idea, we examined behavioral and electrophysiological indices of kindling development and kindling-induced sprouting of hippocampal granule cell axons in wild-type (+/+), heterozygous (+/-), and homozygous (-/-) mice carrying a null mutation of c-fos. The rate of kindling development was significantly attenuated in -/- compared with +/+ mice, as evidenced by both electrophysiological and behavioral measures. Kindling-induced granule cell axon sprouting as measured by the Timm stain was also attenuated in homozygous null mutants compared with +/+ mice, with an intermediate effect in +/- mice. The impairment of kindling-induced axonal sprouting in the null mutants could not be attributed to either detectable loss of dentate hilar neurons or reduced activation of the dentate granule cells by seizures. Instead, our data are consistent with the hypothesis that the null mutation of c-fos attenuates a pathological activity-determined functional plasticity (kindling development) as well as a structural plasticity (mossy fiber reorganization). We favor the hypothesis that this "fos-less phenotype" is attributable to impaired seizure-induced transcriptional activation of one or more growth-related genes.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.16-12-03827.1996