Loading…

In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure

Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-06, Vol.9 (1), p.8716-11, Article 8716
Main Authors: Foglia, Fabrizia, Hazael, Rachael, Meersman, Filip, Wilding, Martin C., Sakai, Victoria García, Rogers, Sarah, Bove, Livia E., Koza, Michael Marek, Moulin, Martine, Haertlein, Michael, Forsyth, V. Trevor, McMillan, Paul F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3
cites cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3
container_end_page 11
container_issue 1
container_start_page 8716
container_title Scientific reports
container_volume 9
creator Foglia, Fabrizia
Hazael, Rachael
Meersman, Filip
Wilding, Martin C.
Sakai, Victoria García
Rogers, Sarah
Bove, Livia E.
Koza, Michael Marek
Moulin, Martine
Haertlein, Michael
Forsyth, V. Trevor
McMillan, Paul F.
description Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.
doi_str_mv 10.1038/s41598-019-44704-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243486588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHGBQ8Ae24l9QSrlY1daCSS-jpbjney62nVaO1nUf49DSik94IutmWfeGc9LyFPOXnEm9OssuTK6YtxUUjZMVuIBOQYmVQUC4OGd9xE5zfmClaPASG4ekyPBgYuay2OyXEb6PRx6-sMNmOi76-j2wWcaIv2yxZ8u4m7naB8xrDHmkOlb5wsYHHUDXYTNln5OmPOY8Al51LldxtOb-4R8-_D-6_miWn36uDw_W1VeSTVUNW8UaN76dcuUlnXdMFVz3_nOgBcClNcAxmDdGuWVUThFdYed0FLXrRMn5M2sezm2e1x7jENyO3uZwt6la9u7YP_NxLC1m_5ga6W5UVAEXs4C23tli7OVnWIMeCMYkwde2Bc3zVJ_NWIe7D5kP-0kYj9mCyBFGUtpXdDn99CLfkyxrGKioGlANU2hYKZ86nNO2N1OwJmdjLWzsbYYa38ba0Upenb3y7clf2wsgJiBXFJxg-lv7__I_gLnjKvB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242772577</pqid></control><display><type>article</type><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</creator><creatorcontrib>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</creatorcontrib><description>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44704-3</identifier><identifier>PMID: 31213614</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2268 ; 639/766/747 ; Aquaporins ; Aqueous solutions ; Bacteria ; Bacteriology ; Biological Physics ; Biological Transport ; Cytoplasm ; Cytoplasm - metabolism ; Datasets ; Diffusion ; Electrolytes ; High pressure ; Humanities and Social Sciences ; Hydrodynamics ; Hydrogenation ; Intracellular ; Investigations ; Kinetics ; Laboratories ; Life Sciences ; Macromolecules ; Microbiology and Parasitology ; multidisciplinary ; Neutron Diffraction - methods ; Neutron scattering ; Neutrons ; NMR ; Nuclear magnetic resonance ; Physics ; Pressure ; Proteins ; Rotational diffusion ; Science ; Science (multidisciplinary) ; Shewanella - cytology ; Shewanella - metabolism ; Shewanella oneidensis ; Transport processes ; Viscosity ; Water - metabolism</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8716-11, Article 8716</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</citedby><cites>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</cites><orcidid>0000-0002-5298-780X ; 0000-0003-1386-8207 ; 0000-0001-5410-0638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2242772577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2242772577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31213614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02173004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foglia, Fabrizia</creatorcontrib><creatorcontrib>Hazael, Rachael</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Wilding, Martin C.</creatorcontrib><creatorcontrib>Sakai, Victoria García</creatorcontrib><creatorcontrib>Rogers, Sarah</creatorcontrib><creatorcontrib>Bove, Livia E.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>McMillan, Paul F.</creatorcontrib><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</description><subject>631/57/2268</subject><subject>639/766/747</subject><subject>Aquaporins</subject><subject>Aqueous solutions</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological Physics</subject><subject>Biological Transport</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Datasets</subject><subject>Diffusion</subject><subject>Electrolytes</subject><subject>High pressure</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>Hydrogenation</subject><subject>Intracellular</subject><subject>Investigations</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Macromolecules</subject><subject>Microbiology and Parasitology</subject><subject>multidisciplinary</subject><subject>Neutron Diffraction - methods</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Rotational diffusion</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shewanella - cytology</subject><subject>Shewanella - metabolism</subject><subject>Shewanella oneidensis</subject><subject>Transport processes</subject><subject>Viscosity</subject><subject>Water - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHGBQ8Ae24l9QSrlY1daCSS-jpbjney62nVaO1nUf49DSik94IutmWfeGc9LyFPOXnEm9OssuTK6YtxUUjZMVuIBOQYmVQUC4OGd9xE5zfmClaPASG4ekyPBgYuay2OyXEb6PRx6-sMNmOi76-j2wWcaIv2yxZ8u4m7naB8xrDHmkOlb5wsYHHUDXYTNln5OmPOY8Al51LldxtOb-4R8-_D-6_miWn36uDw_W1VeSTVUNW8UaN76dcuUlnXdMFVz3_nOgBcClNcAxmDdGuWVUThFdYed0FLXrRMn5M2sezm2e1x7jENyO3uZwt6la9u7YP_NxLC1m_5ga6W5UVAEXs4C23tli7OVnWIMeCMYkwde2Bc3zVJ_NWIe7D5kP-0kYj9mCyBFGUtpXdDn99CLfkyxrGKioGlANU2hYKZ86nNO2N1OwJmdjLWzsbYYa38ba0Upenb3y7clf2wsgJiBXFJxg-lv7__I_gLnjKvB</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Foglia, Fabrizia</creator><creator>Hazael, Rachael</creator><creator>Meersman, Filip</creator><creator>Wilding, Martin C.</creator><creator>Sakai, Victoria García</creator><creator>Rogers, Sarah</creator><creator>Bove, Livia E.</creator><creator>Koza, Michael Marek</creator><creator>Moulin, Martine</creator><creator>Haertlein, Michael</creator><creator>Forsyth, V. Trevor</creator><creator>McMillan, Paul F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5298-780X</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0001-5410-0638</orcidid></search><sort><creationdate>20190618</creationdate><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><author>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57/2268</topic><topic>639/766/747</topic><topic>Aquaporins</topic><topic>Aqueous solutions</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological Physics</topic><topic>Biological Transport</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Datasets</topic><topic>Diffusion</topic><topic>Electrolytes</topic><topic>High pressure</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>Hydrogenation</topic><topic>Intracellular</topic><topic>Investigations</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Macromolecules</topic><topic>Microbiology and Parasitology</topic><topic>multidisciplinary</topic><topic>Neutron Diffraction - methods</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Rotational diffusion</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shewanella - cytology</topic><topic>Shewanella - metabolism</topic><topic>Shewanella oneidensis</topic><topic>Transport processes</topic><topic>Viscosity</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foglia, Fabrizia</creatorcontrib><creatorcontrib>Hazael, Rachael</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Wilding, Martin C.</creatorcontrib><creatorcontrib>Sakai, Victoria García</creatorcontrib><creatorcontrib>Rogers, Sarah</creatorcontrib><creatorcontrib>Bove, Livia E.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>McMillan, Paul F.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foglia, Fabrizia</au><au>Hazael, Rachael</au><au>Meersman, Filip</au><au>Wilding, Martin C.</au><au>Sakai, Victoria García</au><au>Rogers, Sarah</au><au>Bove, Livia E.</au><au>Koza, Michael Marek</au><au>Moulin, Martine</au><au>Haertlein, Michael</au><au>Forsyth, V. Trevor</au><au>McMillan, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-18</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8716</spage><epage>11</epage><pages>8716-11</pages><artnum>8716</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31213614</pmid><doi>10.1038/s41598-019-44704-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5298-780X</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0001-5410-0638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.8716-11, Article 8716
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581952
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/57/2268
639/766/747
Aquaporins
Aqueous solutions
Bacteria
Bacteriology
Biological Physics
Biological Transport
Cytoplasm
Cytoplasm - metabolism
Datasets
Diffusion
Electrolytes
High pressure
Humanities and Social Sciences
Hydrodynamics
Hydrogenation
Intracellular
Investigations
Kinetics
Laboratories
Life Sciences
Macromolecules
Microbiology and Parasitology
multidisciplinary
Neutron Diffraction - methods
Neutron scattering
Neutrons
NMR
Nuclear magnetic resonance
Physics
Pressure
Proteins
Rotational diffusion
Science
Science (multidisciplinary)
Shewanella - cytology
Shewanella - metabolism
Shewanella oneidensis
Transport processes
Viscosity
Water - metabolism
title In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Water%20Dynamics%20in%20Shewanella%20oneidensis%20Bacteria%20at%20High%20Pressure&rft.jtitle=Scientific%20reports&rft.au=Foglia,%20Fabrizia&rft.date=2019-06-18&rft.volume=9&rft.issue=1&rft.spage=8716&rft.epage=11&rft.pages=8716-11&rft.artnum=8716&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44704-3&rft_dat=%3Cproquest_pubme%3E2243486588%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242772577&rft_id=info:pmid/31213614&rfr_iscdi=true