Loading…
In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure
Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular...
Saved in:
Published in: | Scientific reports 2019-06, Vol.9 (1), p.8716-11, Article 8716 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 8716 |
container_title | Scientific reports |
container_volume | 9 |
creator | Foglia, Fabrizia Hazael, Rachael Meersman, Filip Wilding, Martin C. Sakai, Victoria García Rogers, Sarah Bove, Livia E. Koza, Michael Marek Moulin, Martine Haertlein, Michael Forsyth, V. Trevor McMillan, Paul F. |
description | Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live
Shewanella oneidensis
bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm. |
doi_str_mv | 10.1038/s41598-019-44704-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243486588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHGBQ8Ae24l9QSrlY1daCSS-jpbjney62nVaO1nUf49DSik94IutmWfeGc9LyFPOXnEm9OssuTK6YtxUUjZMVuIBOQYmVQUC4OGd9xE5zfmClaPASG4ekyPBgYuay2OyXEb6PRx6-sMNmOi76-j2wWcaIv2yxZ8u4m7naB8xrDHmkOlb5wsYHHUDXYTNln5OmPOY8Al51LldxtOb-4R8-_D-6_miWn36uDw_W1VeSTVUNW8UaN76dcuUlnXdMFVz3_nOgBcClNcAxmDdGuWVUThFdYed0FLXrRMn5M2sezm2e1x7jENyO3uZwt6la9u7YP_NxLC1m_5ga6W5UVAEXs4C23tli7OVnWIMeCMYkwde2Bc3zVJ_NWIe7D5kP-0kYj9mCyBFGUtpXdDn99CLfkyxrGKioGlANU2hYKZ86nNO2N1OwJmdjLWzsbYYa38ba0Upenb3y7clf2wsgJiBXFJxg-lv7__I_gLnjKvB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242772577</pqid></control><display><type>article</type><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</creator><creatorcontrib>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</creatorcontrib><description>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live
Shewanella oneidensis
bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-44704-3</identifier><identifier>PMID: 31213614</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2268 ; 639/766/747 ; Aquaporins ; Aqueous solutions ; Bacteria ; Bacteriology ; Biological Physics ; Biological Transport ; Cytoplasm ; Cytoplasm - metabolism ; Datasets ; Diffusion ; Electrolytes ; High pressure ; Humanities and Social Sciences ; Hydrodynamics ; Hydrogenation ; Intracellular ; Investigations ; Kinetics ; Laboratories ; Life Sciences ; Macromolecules ; Microbiology and Parasitology ; multidisciplinary ; Neutron Diffraction - methods ; Neutron scattering ; Neutrons ; NMR ; Nuclear magnetic resonance ; Physics ; Pressure ; Proteins ; Rotational diffusion ; Science ; Science (multidisciplinary) ; Shewanella - cytology ; Shewanella - metabolism ; Shewanella oneidensis ; Transport processes ; Viscosity ; Water - metabolism</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.8716-11, Article 8716</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</citedby><cites>FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</cites><orcidid>0000-0002-5298-780X ; 0000-0003-1386-8207 ; 0000-0001-5410-0638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2242772577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2242772577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31213614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02173004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foglia, Fabrizia</creatorcontrib><creatorcontrib>Hazael, Rachael</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Wilding, Martin C.</creatorcontrib><creatorcontrib>Sakai, Victoria García</creatorcontrib><creatorcontrib>Rogers, Sarah</creatorcontrib><creatorcontrib>Bove, Livia E.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>McMillan, Paul F.</creatorcontrib><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live
Shewanella oneidensis
bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</description><subject>631/57/2268</subject><subject>639/766/747</subject><subject>Aquaporins</subject><subject>Aqueous solutions</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological Physics</subject><subject>Biological Transport</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Datasets</subject><subject>Diffusion</subject><subject>Electrolytes</subject><subject>High pressure</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>Hydrogenation</subject><subject>Intracellular</subject><subject>Investigations</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Macromolecules</subject><subject>Microbiology and Parasitology</subject><subject>multidisciplinary</subject><subject>Neutron Diffraction - methods</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Rotational diffusion</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shewanella - cytology</subject><subject>Shewanella - metabolism</subject><subject>Shewanella oneidensis</subject><subject>Transport processes</subject><subject>Viscosity</subject><subject>Water - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHGBQ8Ae24l9QSrlY1daCSS-jpbjney62nVaO1nUf49DSik94IutmWfeGc9LyFPOXnEm9OssuTK6YtxUUjZMVuIBOQYmVQUC4OGd9xE5zfmClaPASG4ekyPBgYuay2OyXEb6PRx6-sMNmOi76-j2wWcaIv2yxZ8u4m7naB8xrDHmkOlb5wsYHHUDXYTNln5OmPOY8Al51LldxtOb-4R8-_D-6_miWn36uDw_W1VeSTVUNW8UaN76dcuUlnXdMFVz3_nOgBcClNcAxmDdGuWVUThFdYed0FLXrRMn5M2sezm2e1x7jENyO3uZwt6la9u7YP_NxLC1m_5ga6W5UVAEXs4C23tli7OVnWIMeCMYkwde2Bc3zVJ_NWIe7D5kP-0kYj9mCyBFGUtpXdDn99CLfkyxrGKioGlANU2hYKZ86nNO2N1OwJmdjLWzsbYYa38ba0Upenb3y7clf2wsgJiBXFJxg-lv7__I_gLnjKvB</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>Foglia, Fabrizia</creator><creator>Hazael, Rachael</creator><creator>Meersman, Filip</creator><creator>Wilding, Martin C.</creator><creator>Sakai, Victoria García</creator><creator>Rogers, Sarah</creator><creator>Bove, Livia E.</creator><creator>Koza, Michael Marek</creator><creator>Moulin, Martine</creator><creator>Haertlein, Michael</creator><creator>Forsyth, V. Trevor</creator><creator>McMillan, Paul F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5298-780X</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0001-5410-0638</orcidid></search><sort><creationdate>20190618</creationdate><title>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</title><author>Foglia, Fabrizia ; Hazael, Rachael ; Meersman, Filip ; Wilding, Martin C. ; Sakai, Victoria García ; Rogers, Sarah ; Bove, Livia E. ; Koza, Michael Marek ; Moulin, Martine ; Haertlein, Michael ; Forsyth, V. Trevor ; McMillan, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57/2268</topic><topic>639/766/747</topic><topic>Aquaporins</topic><topic>Aqueous solutions</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological Physics</topic><topic>Biological Transport</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Datasets</topic><topic>Diffusion</topic><topic>Electrolytes</topic><topic>High pressure</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>Hydrogenation</topic><topic>Intracellular</topic><topic>Investigations</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Macromolecules</topic><topic>Microbiology and Parasitology</topic><topic>multidisciplinary</topic><topic>Neutron Diffraction - methods</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Rotational diffusion</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shewanella - cytology</topic><topic>Shewanella - metabolism</topic><topic>Shewanella oneidensis</topic><topic>Transport processes</topic><topic>Viscosity</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foglia, Fabrizia</creatorcontrib><creatorcontrib>Hazael, Rachael</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Wilding, Martin C.</creatorcontrib><creatorcontrib>Sakai, Victoria García</creatorcontrib><creatorcontrib>Rogers, Sarah</creatorcontrib><creatorcontrib>Bove, Livia E.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Moulin, Martine</creatorcontrib><creatorcontrib>Haertlein, Michael</creatorcontrib><creatorcontrib>Forsyth, V. Trevor</creatorcontrib><creatorcontrib>McMillan, Paul F.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foglia, Fabrizia</au><au>Hazael, Rachael</au><au>Meersman, Filip</au><au>Wilding, Martin C.</au><au>Sakai, Victoria García</au><au>Rogers, Sarah</au><au>Bove, Livia E.</au><au>Koza, Michael Marek</au><au>Moulin, Martine</au><au>Haertlein, Michael</au><au>Forsyth, V. Trevor</au><au>McMillan, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-18</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>8716</spage><epage>11</epage><pages>8716-11</pages><artnum>8716</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live
Shewanella oneidensis
bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31213614</pmid><doi>10.1038/s41598-019-44704-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5298-780X</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0001-5410-0638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.8716-11, Article 8716 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581952 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/57/2268 639/766/747 Aquaporins Aqueous solutions Bacteria Bacteriology Biological Physics Biological Transport Cytoplasm Cytoplasm - metabolism Datasets Diffusion Electrolytes High pressure Humanities and Social Sciences Hydrodynamics Hydrogenation Intracellular Investigations Kinetics Laboratories Life Sciences Macromolecules Microbiology and Parasitology multidisciplinary Neutron Diffraction - methods Neutron scattering Neutrons NMR Nuclear magnetic resonance Physics Pressure Proteins Rotational diffusion Science Science (multidisciplinary) Shewanella - cytology Shewanella - metabolism Shewanella oneidensis Transport processes Viscosity Water - metabolism |
title | In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Water%20Dynamics%20in%20Shewanella%20oneidensis%20Bacteria%20at%20High%20Pressure&rft.jtitle=Scientific%20reports&rft.au=Foglia,%20Fabrizia&rft.date=2019-06-18&rft.volume=9&rft.issue=1&rft.spage=8716&rft.epage=11&rft.pages=8716-11&rft.artnum=8716&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-44704-3&rft_dat=%3Cproquest_pubme%3E2243486588%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-6175281bcdb05846670561cfcf92c3325c82299e6b95c595e2c338fef38486ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2242772577&rft_id=info:pmid/31213614&rfr_iscdi=true |