Loading…

Role of the Suprachiasmatic and Arcuate Nuclei in Diurnal Temperature Regulation in the Rat

In mammals, daily changes in body temperature (Tb) depend on the integrity of the suprachiasmatic nucleus (SCN). Fasting influences the Tb in the resting period and the presence of the SCN is essential for this process. However, the origin of this circadian/metabolic influence is unknown. We hypothe...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2015-11, Vol.35 (46), p.15419-15429
Main Authors: Guzmán-Ruiz, Mara Alaide, Ramirez-Corona, Arlen, Guerrero-Vargas, Natali Nadia, Sabath, Elizabeth, Ramirez-Plascencia, Oscar Daniel, Fuentes-Romero, Rebecca, León-Mercado, Luis Abel, Basualdo Sigales, MariCarmen, Escobar, Carolina, Buijs, Ruud Marinus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In mammals, daily changes in body temperature (Tb) depend on the integrity of the suprachiasmatic nucleus (SCN). Fasting influences the Tb in the resting period and the presence of the SCN is essential for this process. However, the origin of this circadian/metabolic influence is unknown. We hypothesized that, not only the SCN but also the arcuate nucleus (ARC), are involved in the Tb setting through afferents to the thermoregulatory median preoptic nucleus (MnPO). Therefore, we investigated by neuronal tracing and microdialysis experiments the possible targeting of the MnPO by the SCN and the ARC in male Wistar rats. We observed that vasopressin release from the SCN decreases the temperature just before light onset, whereas α-melanocyte stimulating hormone release, especially at the end of the dark period, maintains high temperature. Both peptides have opposite effects on the brown adipose tissue activity through thermoregulatory nuclei such as the dorsomedial nucleus of the hypothalamus and the dorsal raphe nucleus. The present study indicates that the coordination between circadian and metabolic signaling within the hypothalamus is essential for an adequate temperature control. When circadian and metabolic systems are not well synchronized, individuals may develop metabolic diseases. The underlying mechanisms are unknown. Here, we demonstrate that the balance between the releases of neuropeptides derived from the biological clock and from a metabolic sensory organ as the arcuate nucleus, are essential for an adequate temperature control. These observations show that brain areas involved in circadian and metabolic functions of the body need to interact to produce a coherent arrangement of physiological processes associated with temperature control.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1449-15.2015