Loading…
NMR experiments redefine the hemoglobin binding properties of bacterial NEAr‐iron Transporter domains
Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinic...
Saved in:
Published in: | Protein science 2019-08, Vol.28 (8), p.1513-1523 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram‐positive bacterial pathogens scavenge heme using an array of secreted and cell‐wall‐associated receptors that contain NEAr‐iron Transporter (NEAT) domains. Experimentally defining the Hb binding properties of NEAT domains has been challenging, limiting our understanding of their function in heme uptake. Here we show that solution‐state NMR spectroscopy is a powerful tool to define the Hb binding properties of NEAT domains. The utility of this method is demonstrated using the NEAT domains from Bacillus anthracis and Listeria monocytogenes. Our results are compatible with the existence of at least two types of NEAT domains that are capable of interacting with either Hb or heme. These binding properties can be predicted from their primary sequences, with Hb‐ and heme‐binding NEAT domains being distinguished by the presence of (F/Y)YH(Y/F) and S/YXXXY motifs, respectively. The results of this work should enable the functions of a wide range of NEAT domain containing proteins in pathogenic bacteria to be reliably predicted. |
---|---|
ISSN: | 0961-8368 1469-896X |
DOI: | 10.1002/pro.3662 |