Loading…
p110γ deficiency protects against pancreatic carcinogenesis yet predisposes to diet-induced hepatotoxicity
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor survival and resistance to conventional therapies. PI3K signaling is implicated in both disease initiation and progression, and specific inhibitors of selected PI3K p110 isoforms for managing solid tumors are emerging. We demonstrate...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2019-07, Vol.116 (29), p.14724-14733 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor survival and resistance to conventional therapies. PI3K signaling is implicated in both disease initiation and progression, and specific inhibitors of selected PI3K p110 isoforms for managing solid tumors are emerging. We demonstrate that increased activation of PI3K signals cooperates with oncogenic Kras to promote aggressive PDAC in vivo. The p110γ isoform is overexpressed in tumor tissue and promotes carcinogenesis via canonical AKT signaling. Its selective blockade sensitizes tumor cells to gemcitabine in vitro, and genetic ablation of p110γ protects against Kras-induced tumorigenesis. Diet/obesity was identified as a crucial means of p110 subunit up-regulation, and in the setting of a high-fat diet, p110γ ablation failed to protect against tumor development, showing increased activation of pAKT and hepatic damage. These observations suggest that a careful and judicious approach should be considered when targeting p110γ for therapy, particularly in obese patients. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1813012116 |