Loading…

ComBATing aging—does increased brown adipose tissue activity confer longevity?

Brown and its related beige adipose tissue (BAT) play a definitive role in maintaining body temperature by producing heat through uncoupling protein 1 (UCP1), which acts by dissociating oxidative phosphorylation from ATP production, resulting in the release of heat. Therefore, in order to maintain h...

Full description

Saved in:
Bibliographic Details
Published in:GeroScience 2019-06, Vol.41 (3), p.285-296
Main Authors: Darcy, Justin, Tseng, Yu-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brown and its related beige adipose tissue (BAT) play a definitive role in maintaining body temperature by producing heat through uncoupling protein 1 (UCP1), which acts by dissociating oxidative phosphorylation from ATP production, resulting in the release of heat. Therefore, in order to maintain high thermogenic capacity, BAT must act as a metabolic sink by taking up vast amounts of circulating glucose and lipids for oxidation. This, along with the rediscovery of BAT in adult humans, has fueled the study of BAT as a putative therapeutic approach to manage the growing rates of obesity and metabolic syndromes. Notably, many of the beneficial consequences of BAT activity overlap with metabolic biomarkers of extended lifespan and healthspan. In this review, we provide background about BAT including the thermogenic program, BAT’s role as a secretory organ, and differences between BAT in mice and humans. We also provide details on BAT during aging, and perspectives on the potential of targeting BAT to promote lifespan and healthspan.
ISSN:2509-2715
2509-2723
DOI:10.1007/s11357-019-00076-0