Loading…
Shal and Shaker Differential Contribution to the K+ Currents in the Drosophila Mushroom Body Neurons
Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker chan...
Saved in:
Published in: | The Journal of neuroscience 2005-03, Vol.25 (9), p.2348-2358 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker channels to MB intrinsic neuron (MBN) physiology has not been documented. We found that transcripts for shab, shaw, shaker, and shal, among which only Shaker and Shal have been reported to code for A-type currents, are present in the MBs. The electrophysiological data showed that the absence of functional Shaker channels modifies the distribution of half-inactivation voltages (V(i1/2)) in the MBNs, indicating a segregation of Shaker channels to only a subset (approximately 28%) of their somata. In harmony with this notion, we found that approximately one-fifth of MBNs lacking functional Shaker channels displayed dramatically slowed-down outward current inactivation times and reduced peak-current amplitudes. Furthermore, whereas all MBNs were sensitive to 4-aminopyridine, a nonspecific A-type current blocker, a subset of neurons (approximately 24%) displayed little sensitivity to a Shal-specific toxin. This subset of neurons displaying toxin-insensitive outward currents had more depolarized V(i1/2) values attributable to Shaker channels. Our findings provide the first direct evidence that altered Shaker channel function disrupts MBN physiology in Drosophila. To our surprise, the experimental data also indicate that Shaker channels segregate to a minor fraction of MB neuronal somata (20-30%), and that Shal channels contribute the somatic A-type current in the majority of MBNs. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.4384-04.2005 |