Loading…
Osmotic regulation of estrogen receptor-beta in rat vasopressin and oxytocin neurons
The vasopressin (VP) magnocellular neurosecretory cells (MNCs) in the supraoptic and paraventricular (PVN) nuclei are regulated by estrogen and exhibit robust expression of estrogen receptor (ER)-beta. In contrast, only approximately 7.5% of oxytocin (OT) MNCs express ER-beta. We examined the osmoti...
Saved in:
Published in: | The Journal of neuroscience 2003-05, Vol.23 (10), p.4261-4269 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vasopressin (VP) magnocellular neurosecretory cells (MNCs) in the supraoptic and paraventricular (PVN) nuclei are regulated by estrogen and exhibit robust expression of estrogen receptor (ER)-beta. In contrast, only approximately 7.5% of oxytocin (OT) MNCs express ER-beta. We examined the osmotic regulation of ER-beta mRNA expression in MNCs using quantitative in situ hybridization histochemistry. Hyper-osmolality induced via 2% hypertonic saline ingestion significantly decreased, whereas sustained hypo-osmolality induced via d-d-arginine VP and liquid diet increased ER-beta mRNA expression in MNCs (p < 0.05). Thus, the expression of ER-beta mRNA correlated inversely with changes in plasma osmolality. Because hyper-osmolality is a potent stimulus for VP and OT release, this suggests an inhibitory role for ER-beta in MNCs. Immunocytochemistry demonstrated that the decrease in ER-beta mRNA was translated into depletion of receptor protein content in hyper-osmotic animals. Numerous MNCs were positive for ER-beta in control animals, but they were virtually devoid of ER-beta-immunoreactivity (IR) in hyper-osmotic animals. The osmotically induced decrease in ER-beta expression was selective for MNCs because ER-beta-IR remained unaltered in PVN parvocellular neurons. Plasma estradiol and testosterone were not correlated with ER-beta mRNA expression after osmotic manipulation, suggesting that ER-beta expression was not driven by ligand availability. Expression of FOS-IR in MNCs with attenuated ER-beta-IR, and the absence of FOS-IR in parvocellular neurons that retain ER-beta-IR suggest a role for neuronal activation in the regulation of ER-beta expression in MNCs. Thus, osmotic modulation of ER-beta expression in MNCs may augment or attenuate an inhibitory effect of gonadal steroids on VP release. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.23-10-04261.2003 |