Loading…

Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor Are Required Simultaneously for Survival of Dopaminergic Primary Sensory Neurons In Vivo

Null mutations affecting members of the transforming growth factor-beta and neurotrophin families result in overlapping patterns of neuronal cell death. This is particularly striking in the cranial sensory nodose-petrosal ganglion complex (NPG), in which loss of either glial cell line-derived neurot...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2001-01, Vol.21 (2), p.581-589
Main Authors: Erickson, Jeffery T, Brosenitsch, Teresa A, Katz, David M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Null mutations affecting members of the transforming growth factor-beta and neurotrophin families result in overlapping patterns of neuronal cell death. This is particularly striking in the cranial sensory nodose-petrosal ganglion complex (NPG), in which loss of either glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or neurotrophin-4 (NT-4) results in a 30-50% reduction in neuronal survival. It is unknown, however, whether GDNF and any single neurotrophin support survival of the same cells, and if so, whether they are required simultaneously or sequentially during development. To approach these issues we defined survival requirements of nodose and petrosal neurons for GDNF in vitro and in bdnf, gdnf, and bdnf/gdnf null mutant mice, as well as the distribution of GDNF in NPG target tissues. Our analyses focused on the total population of ganglion cells as well as the subset of NPG neurons that are dopaminergic. Neuron losses in bdnf/gdnf double mutants are not additive of the losses in single bdnf or gdnf null mutants, indicating that many cells, including dopaminergic neurons, require both GDNF and BDNF for survival in vivo. Moreover, both factors are required during the same period of development, between embryonic day (E) 15.5 and E17.5. In addition, GDNF, like BDNF is expressed in target tissues at the time of initial target innervation and coincident with GDNF dependence of the innervating neurons. Together, these findings demonstrate that both GDNF and BDNF can act as target-derived trophic factors and are required simultaneously for survival of some primary sensory neurons.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.21-02-00581.2001