Loading…
Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typic...
Saved in:
Published in: | Science advances 2019-10, Vol.5 (10), p.eaay1394-eaay1394 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typical for protein crystallography (0.05 to 0.3mm) provide insufficient signal intensity. In this work, we present a microwave self-resonant microhelix for nanoliter samples that can be implemented in a commercial X-band (9.5 GHz) EPR spectrometer. The self-resonant microhelix provides a measured signal-to-noise improvement up to a factor of 28 with respect to commercial EPR resonators. This work opens up the possibility to use advanced EPR techniques for studying protein single crystals of dimensions typical for x-ray crystallography. The technique is demonstrated by EPR experiments on single crystal [FeFe]-hydrogenase (
; CpI) with dimensions of 0.3 mm by 0.1 mm by 0.1 mm, yielding a proposed
-tensor orientation of the H
state. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aay1394 |