Loading…
Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging
Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 4...
Saved in:
Published in: | Magnetic resonance in medicine 2020-01, Vol.83 (1), p.352-366 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
Methods
The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions.
Results
The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
Conclusion
The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales. |
---|---|
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.27909 |