Loading…

Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging

Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 4...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2020-01, Vol.83 (1), p.352-366
Main Authors: Tan, Ek T., Hua, Yihe, Fiveland, Eric W., Vermilyea, Mark E., Piel, Joseph E., Park, Keith J., Ho, Vincent B., Foo, Thomas K. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3
cites cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3
container_end_page 366
container_issue 1
container_start_page 352
container_title Magnetic resonance in medicine
container_volume 83
creator Tan, Ek T.
Hua, Yihe
Fiveland, Eric W.
Vermilyea, Mark E.
Piel, Joseph E.
Park, Keith J.
Ho, Vincent B.
Foo, Thomas K. F.
description Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. Methods The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions. Results The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). Conclusion The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.
doi_str_mv 10.1002/mrm.27909
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268946289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lpd-Ack4EYX0-ZrJslGKMUvaKmIrkMmc2ZuSia5JjMt_femvbWo0NWBnIeH9-RF6DUlR5QQdjzn-YhJTfQTtKEtYw1rtXiKNkQK0nCqxQF6UcolIURrKZ6jA065ajumNqh8g-x3W8g24Aj5CnBZ_LwGu_gUcfCzXwpOI7Z466cttvMu-GUdANs44BLgGme7AJ7tFGHxDo8ewoCnbAcPccEu-YDHlKt7zclXzMfpJXo22lDg1f08RD8_ffxx-qU5u_j89fTkrHFCcN30dBRcaiCSdw7k0EmlgFBQUllBtLLUcTEoqgjrYeitcFIMouvqa8_a0fFD9GHv3a39DIOrgeqZZpdrjnxjkvXm3030WzOlK9NJqSTpquDdvSCnXyuUxcy-OAjBRkhrMYx1Sov6j7qib_9DL9OaYz3PME4oaVvCRaXe7ymXUykZxocwlJjbKk2t0txVWdk3f6d_IP90V4HjPXDtA9w8bjLn38_3yt_UZqp_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301055034</pqid></control><display><type>article</type><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</creator><creatorcontrib>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</creatorcontrib><description>Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. Methods The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions. Results The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). Conclusion The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27909</identifier><identifier>PMID: 31385628</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Age ; Algorithms ; Amplitudes ; Brain ; Brain - diagnostic imaging ; Dependence ; diffusion imaging ; electric field ; Electric fields ; Electric Stimulation ; Equipment Design ; Female ; head‐only scanner ; Humans ; Image Processing, Computer-Assisted ; Magnetic Fields ; Magnetic Resonance Imaging ; Male ; Medical imaging ; microstructure ; Middle Aged ; MR safety ; Neuroimaging ; Neuroimaging - instrumentation ; Neuroimaging - methods ; Neurology ; Noise reduction ; peripheral nerve stimulation ; Peripheral nerves ; Peripheral Nerves - diagnostic imaging ; Peripheral Nerves - physiology ; Peripheral Nervous System - diagnostic imaging ; Phantoms, Imaging ; Reproducibility of Results ; Slew rate ; Stimulation ; Subsystems ; Thresholds ; Whole Body Imaging</subject><ispartof>Magnetic resonance in medicine, 2020-01, Vol.83 (1), p.352-366</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</citedby><cites>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</cites><orcidid>0000-0003-2847-9378 ; 0000-0002-9016-1005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31385628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Ek T.</creatorcontrib><creatorcontrib>Hua, Yihe</creatorcontrib><creatorcontrib>Fiveland, Eric W.</creatorcontrib><creatorcontrib>Vermilyea, Mark E.</creatorcontrib><creatorcontrib>Piel, Joseph E.</creatorcontrib><creatorcontrib>Park, Keith J.</creatorcontrib><creatorcontrib>Ho, Vincent B.</creatorcontrib><creatorcontrib>Foo, Thomas K. F.</creatorcontrib><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. Methods The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions. Results The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). Conclusion The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</description><subject>Adult</subject><subject>Age</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Dependence</subject><subject>diffusion imaging</subject><subject>electric field</subject><subject>Electric fields</subject><subject>Electric Stimulation</subject><subject>Equipment Design</subject><subject>Female</subject><subject>head‐only scanner</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>microstructure</subject><subject>Middle Aged</subject><subject>MR safety</subject><subject>Neuroimaging</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Noise reduction</subject><subject>peripheral nerve stimulation</subject><subject>Peripheral nerves</subject><subject>Peripheral Nerves - diagnostic imaging</subject><subject>Peripheral Nerves - physiology</subject><subject>Peripheral Nervous System - diagnostic imaging</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Slew rate</subject><subject>Stimulation</subject><subject>Subsystems</subject><subject>Thresholds</subject><subject>Whole Body Imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhoMo9lpd-Ack4EYX0-ZrJslGKMUvaKmIrkMmc2ZuSia5JjMt_femvbWo0NWBnIeH9-RF6DUlR5QQdjzn-YhJTfQTtKEtYw1rtXiKNkQK0nCqxQF6UcolIURrKZ6jA065ajumNqh8g-x3W8g24Aj5CnBZ_LwGu_gUcfCzXwpOI7Z466cttvMu-GUdANs44BLgGme7AJ7tFGHxDo8ewoCnbAcPccEu-YDHlKt7zclXzMfpJXo22lDg1f08RD8_ffxx-qU5u_j89fTkrHFCcN30dBRcaiCSdw7k0EmlgFBQUllBtLLUcTEoqgjrYeitcFIMouvqa8_a0fFD9GHv3a39DIOrgeqZZpdrjnxjkvXm3030WzOlK9NJqSTpquDdvSCnXyuUxcy-OAjBRkhrMYx1Sov6j7qib_9DL9OaYz3PME4oaVvCRaXe7ymXUykZxocwlJjbKk2t0txVWdk3f6d_IP90V4HjPXDtA9w8bjLn38_3yt_UZqp_</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Tan, Ek T.</creator><creator>Hua, Yihe</creator><creator>Fiveland, Eric W.</creator><creator>Vermilyea, Mark E.</creator><creator>Piel, Joseph E.</creator><creator>Park, Keith J.</creator><creator>Ho, Vincent B.</creator><creator>Foo, Thomas K. F.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2847-9378</orcidid><orcidid>https://orcid.org/0000-0002-9016-1005</orcidid></search><sort><creationdate>202001</creationdate><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><author>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Age</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Dependence</topic><topic>diffusion imaging</topic><topic>electric field</topic><topic>Electric fields</topic><topic>Electric Stimulation</topic><topic>Equipment Design</topic><topic>Female</topic><topic>head‐only scanner</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>microstructure</topic><topic>Middle Aged</topic><topic>MR safety</topic><topic>Neuroimaging</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Noise reduction</topic><topic>peripheral nerve stimulation</topic><topic>Peripheral nerves</topic><topic>Peripheral Nerves - diagnostic imaging</topic><topic>Peripheral Nerves - physiology</topic><topic>Peripheral Nervous System - diagnostic imaging</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Slew rate</topic><topic>Stimulation</topic><topic>Subsystems</topic><topic>Thresholds</topic><topic>Whole Body Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ek T.</creatorcontrib><creatorcontrib>Hua, Yihe</creatorcontrib><creatorcontrib>Fiveland, Eric W.</creatorcontrib><creatorcontrib>Vermilyea, Mark E.</creatorcontrib><creatorcontrib>Piel, Joseph E.</creatorcontrib><creatorcontrib>Park, Keith J.</creatorcontrib><creatorcontrib>Ho, Vincent B.</creatorcontrib><creatorcontrib>Foo, Thomas K. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ek T.</au><au>Hua, Yihe</au><au>Fiveland, Eric W.</au><au>Vermilyea, Mark E.</au><au>Piel, Joseph E.</au><au>Park, Keith J.</au><au>Ho, Vincent B.</au><au>Foo, Thomas K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-01</date><risdate>2020</risdate><volume>83</volume><issue>1</issue><spage>352</spage><epage>366</epage><pages>352-366</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. Methods The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions. Results The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). Conclusion The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31385628</pmid><doi>10.1002/mrm.27909</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2847-9378</orcidid><orcidid>https://orcid.org/0000-0002-9016-1005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2020-01, Vol.83 (1), p.352-366
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778706
source Wiley-Blackwell Read & Publish Collection
subjects Adult
Age
Algorithms
Amplitudes
Brain
Brain - diagnostic imaging
Dependence
diffusion imaging
electric field
Electric fields
Electric Stimulation
Equipment Design
Female
head‐only scanner
Humans
Image Processing, Computer-Assisted
Magnetic Fields
Magnetic Resonance Imaging
Male
Medical imaging
microstructure
Middle Aged
MR safety
Neuroimaging
Neuroimaging - instrumentation
Neuroimaging - methods
Neurology
Noise reduction
peripheral nerve stimulation
Peripheral nerves
Peripheral Nerves - diagnostic imaging
Peripheral Nerves - physiology
Peripheral Nervous System - diagnostic imaging
Phantoms, Imaging
Reproducibility of Results
Slew rate
Stimulation
Subsystems
Thresholds
Whole Body Imaging
title Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripheral%20nerve%20stimulation%20limits%20of%20a%20high%20amplitude%20and%20slew%20rate%20magnetic%20field%20gradient%20coil%20for%20neuroimaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Tan,%20Ek%20T.&rft.date=2020-01&rft.volume=83&rft.issue=1&rft.spage=352&rft.epage=366&rft.pages=352-366&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27909&rft_dat=%3Cproquest_pubme%3E2268946289%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301055034&rft_id=info:pmid/31385628&rfr_iscdi=true