Loading…
Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging
Purpose To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 4...
Saved in:
Published in: | Magnetic resonance in medicine 2020-01, Vol.83 (1), p.352-366 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3 |
container_end_page | 366 |
container_issue | 1 |
container_start_page | 352 |
container_title | Magnetic resonance in medicine |
container_volume | 83 |
creator | Tan, Ek T. Hua, Yihe Fiveland, Eric W. Vermilyea, Mark E. Piel, Joseph E. Park, Keith J. Ho, Vincent B. Foo, Thomas K. F. |
description | Purpose
To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
Methods
The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions.
Results
The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
Conclusion
The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales. |
doi_str_mv | 10.1002/mrm.27909 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268946289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lpd-Ack4EYX0-ZrJslGKMUvaKmIrkMmc2ZuSia5JjMt_femvbWo0NWBnIeH9-RF6DUlR5QQdjzn-YhJTfQTtKEtYw1rtXiKNkQK0nCqxQF6UcolIURrKZ6jA065ajumNqh8g-x3W8g24Aj5CnBZ_LwGu_gUcfCzXwpOI7Z466cttvMu-GUdANs44BLgGme7AJ7tFGHxDo8ewoCnbAcPccEu-YDHlKt7zclXzMfpJXo22lDg1f08RD8_ffxx-qU5u_j89fTkrHFCcN30dBRcaiCSdw7k0EmlgFBQUllBtLLUcTEoqgjrYeitcFIMouvqa8_a0fFD9GHv3a39DIOrgeqZZpdrjnxjkvXm3030WzOlK9NJqSTpquDdvSCnXyuUxcy-OAjBRkhrMYx1Sov6j7qib_9DL9OaYz3PME4oaVvCRaXe7ymXUykZxocwlJjbKk2t0txVWdk3f6d_IP90V4HjPXDtA9w8bjLn38_3yt_UZqp_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301055034</pqid></control><display><type>article</type><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</creator><creatorcontrib>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</creatorcontrib><description>Purpose
To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
Methods
The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions.
Results
The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
Conclusion
The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27909</identifier><identifier>PMID: 31385628</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Age ; Algorithms ; Amplitudes ; Brain ; Brain - diagnostic imaging ; Dependence ; diffusion imaging ; electric field ; Electric fields ; Electric Stimulation ; Equipment Design ; Female ; head‐only scanner ; Humans ; Image Processing, Computer-Assisted ; Magnetic Fields ; Magnetic Resonance Imaging ; Male ; Medical imaging ; microstructure ; Middle Aged ; MR safety ; Neuroimaging ; Neuroimaging - instrumentation ; Neuroimaging - methods ; Neurology ; Noise reduction ; peripheral nerve stimulation ; Peripheral nerves ; Peripheral Nerves - diagnostic imaging ; Peripheral Nerves - physiology ; Peripheral Nervous System - diagnostic imaging ; Phantoms, Imaging ; Reproducibility of Results ; Slew rate ; Stimulation ; Subsystems ; Thresholds ; Whole Body Imaging</subject><ispartof>Magnetic resonance in medicine, 2020-01, Vol.83 (1), p.352-366</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</citedby><cites>FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</cites><orcidid>0000-0003-2847-9378 ; 0000-0002-9016-1005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31385628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Ek T.</creatorcontrib><creatorcontrib>Hua, Yihe</creatorcontrib><creatorcontrib>Fiveland, Eric W.</creatorcontrib><creatorcontrib>Vermilyea, Mark E.</creatorcontrib><creatorcontrib>Piel, Joseph E.</creatorcontrib><creatorcontrib>Park, Keith J.</creatorcontrib><creatorcontrib>Ho, Vincent B.</creatorcontrib><creatorcontrib>Foo, Thomas K. F.</creatorcontrib><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
Methods
The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions.
Results
The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
Conclusion
The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</description><subject>Adult</subject><subject>Age</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Dependence</subject><subject>diffusion imaging</subject><subject>electric field</subject><subject>Electric fields</subject><subject>Electric Stimulation</subject><subject>Equipment Design</subject><subject>Female</subject><subject>head‐only scanner</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>microstructure</subject><subject>Middle Aged</subject><subject>MR safety</subject><subject>Neuroimaging</subject><subject>Neuroimaging - instrumentation</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Noise reduction</subject><subject>peripheral nerve stimulation</subject><subject>Peripheral nerves</subject><subject>Peripheral Nerves - diagnostic imaging</subject><subject>Peripheral Nerves - physiology</subject><subject>Peripheral Nervous System - diagnostic imaging</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Slew rate</subject><subject>Stimulation</subject><subject>Subsystems</subject><subject>Thresholds</subject><subject>Whole Body Imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhoMo9lpd-Ack4EYX0-ZrJslGKMUvaKmIrkMmc2ZuSia5JjMt_femvbWo0NWBnIeH9-RF6DUlR5QQdjzn-YhJTfQTtKEtYw1rtXiKNkQK0nCqxQF6UcolIURrKZ6jA065ajumNqh8g-x3W8g24Aj5CnBZ_LwGu_gUcfCzXwpOI7Z466cttvMu-GUdANs44BLgGme7AJ7tFGHxDo8ewoCnbAcPccEu-YDHlKt7zclXzMfpJXo22lDg1f08RD8_ffxx-qU5u_j89fTkrHFCcN30dBRcaiCSdw7k0EmlgFBQUllBtLLUcTEoqgjrYeitcFIMouvqa8_a0fFD9GHv3a39DIOrgeqZZpdrjnxjkvXm3030WzOlK9NJqSTpquDdvSCnXyuUxcy-OAjBRkhrMYx1Sov6j7qib_9DL9OaYz3PME4oaVvCRaXe7ymXUykZxocwlJjbKk2t0txVWdk3f6d_IP90V4HjPXDtA9w8bjLn38_3yt_UZqp_</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Tan, Ek T.</creator><creator>Hua, Yihe</creator><creator>Fiveland, Eric W.</creator><creator>Vermilyea, Mark E.</creator><creator>Piel, Joseph E.</creator><creator>Park, Keith J.</creator><creator>Ho, Vincent B.</creator><creator>Foo, Thomas K. F.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2847-9378</orcidid><orcidid>https://orcid.org/0000-0002-9016-1005</orcidid></search><sort><creationdate>202001</creationdate><title>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</title><author>Tan, Ek T. ; Hua, Yihe ; Fiveland, Eric W. ; Vermilyea, Mark E. ; Piel, Joseph E. ; Park, Keith J. ; Ho, Vincent B. ; Foo, Thomas K. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Age</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Dependence</topic><topic>diffusion imaging</topic><topic>electric field</topic><topic>Electric fields</topic><topic>Electric Stimulation</topic><topic>Equipment Design</topic><topic>Female</topic><topic>head‐only scanner</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>microstructure</topic><topic>Middle Aged</topic><topic>MR safety</topic><topic>Neuroimaging</topic><topic>Neuroimaging - instrumentation</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Noise reduction</topic><topic>peripheral nerve stimulation</topic><topic>Peripheral nerves</topic><topic>Peripheral Nerves - diagnostic imaging</topic><topic>Peripheral Nerves - physiology</topic><topic>Peripheral Nervous System - diagnostic imaging</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Slew rate</topic><topic>Stimulation</topic><topic>Subsystems</topic><topic>Thresholds</topic><topic>Whole Body Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ek T.</creatorcontrib><creatorcontrib>Hua, Yihe</creatorcontrib><creatorcontrib>Fiveland, Eric W.</creatorcontrib><creatorcontrib>Vermilyea, Mark E.</creatorcontrib><creatorcontrib>Piel, Joseph E.</creatorcontrib><creatorcontrib>Park, Keith J.</creatorcontrib><creatorcontrib>Ho, Vincent B.</creatorcontrib><creatorcontrib>Foo, Thomas K. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ek T.</au><au>Hua, Yihe</au><au>Fiveland, Eric W.</au><au>Vermilyea, Mark E.</au><au>Piel, Joseph E.</au><au>Park, Keith J.</au><au>Ho, Vincent B.</au><au>Foo, Thomas K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-01</date><risdate>2020</risdate><volume>83</volume><issue>1</issue><spage>352</spage><epage>366</epage><pages>352-366</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To establish peripheral nerve stimulation (PNS) thresholds for an ultra‐high performance magnetic field gradient subsystem (simultaneous 200‐mT/m gradient amplitude and 500‐T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42‐cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
Methods
The MAGNUS head gradient was installed in a whole‐body 3T scanner with a custom 16‐rung bird‐cage transmit/receive RF coil compatible with phased‐array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2‐4 cm in the superior–inferior and anterior–posterior directions.
Results
The x‐axis (left–right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z‐axis (superior–inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y‐axis (anterior–posterior) stimulation was negligible. X‐axis and z‐axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x‐axis and z‐axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise‐to‐diffusion contrast as compared with whole‐body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
Conclusion
The PNS threshold of MAGNUS is significantly higher than that for whole‐body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31385628</pmid><doi>10.1002/mrm.27909</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2847-9378</orcidid><orcidid>https://orcid.org/0000-0002-9016-1005</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2020-01, Vol.83 (1), p.352-366 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778706 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adult Age Algorithms Amplitudes Brain Brain - diagnostic imaging Dependence diffusion imaging electric field Electric fields Electric Stimulation Equipment Design Female head‐only scanner Humans Image Processing, Computer-Assisted Magnetic Fields Magnetic Resonance Imaging Male Medical imaging microstructure Middle Aged MR safety Neuroimaging Neuroimaging - instrumentation Neuroimaging - methods Neurology Noise reduction peripheral nerve stimulation Peripheral nerves Peripheral Nerves - diagnostic imaging Peripheral Nerves - physiology Peripheral Nervous System - diagnostic imaging Phantoms, Imaging Reproducibility of Results Slew rate Stimulation Subsystems Thresholds Whole Body Imaging |
title | Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peripheral%20nerve%20stimulation%20limits%20of%20a%20high%20amplitude%20and%20slew%20rate%20magnetic%20field%20gradient%20coil%20for%20neuroimaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Tan,%20Ek%20T.&rft.date=2020-01&rft.volume=83&rft.issue=1&rft.spage=352&rft.epage=366&rft.pages=352-366&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27909&rft_dat=%3Cproquest_pubme%3E2268946289%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4439-b1f4379e0736ce7d6788e01e878a4098a1c34d81802bedba4c74d466c34b25fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301055034&rft_id=info:pmid/31385628&rfr_iscdi=true |