Loading…
Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity
Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapi...
Saved in:
Published in: | The Journal of neuroscience 1998-09, Vol.18 (18), p.7178-7188 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143 |
container_end_page | 7188 |
container_issue | 18 |
container_start_page | 7178 |
container_title | The Journal of neuroscience |
container_volume | 18 |
creator | Ingi, Tatsuya Krumins, Andrejs M Chidiac, Peter Brothers, Greg M Chung, Stephen Snow, Bryan E Barnes, Carol A Lanahan, Anthony A Siderovski, David P Ross, Elliott M Gilman, Alfred G Worley, Paul F |
description | Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction. |
doi_str_mv | 10.1523/jneurosci.18-18-07178.1998 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73916342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</originalsourceid><addsrcrecordid>eNpVkV9r2zAUxcXY6NJuH2Eg9rA9OdU_W_YeBiNr0442Lcn6LG4UyVGR5c6yG_LtJy-hrHBBEufc373iIPSZkinNGT9_DGbo2qjdlJZZKiKpLKe0qso3aJIcVcYEoW_RhDBJskJI8R6dxvhICJGEyhN0UkleFIJO0ObnPkDjNF6aevDQuzbg1uLlfMXwaqhrE_uIAS_aZ-PxrdFbCC422AU8z-67tjfptnJ1AO9CjSFs8GLcLb3xvYfYO-36_Qf0zoKP5uPxPEMPlxe_Z1fZzd38evbjJtM5o33GibQSuCYFA8slq9ZrRog1JLeFyLnlJTBOKgo5lKUBKoSVjHDBJLdCU8HP0PcD92lYN2ajTeg78Oqpcw10e9WCU6-V4Laqbp9VISvOuEyAL0dA1_4Z0t9V46I23kMw7RCV5BUt0sBk_HYw6pRD7Ix9GUKJGjNSvxYXD8u71exa0XKsfxmpMaPU_On_NV9aj6Ek_etB37p6u3OdUbEB75Obqt1ud-CNOP4XapadyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73916342</pqid></control><display><type>article</type><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><source>NCBI_PubMed Central(免费)</source><creator>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</creator><creatorcontrib>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</creatorcontrib><description>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.18-18-07178.1998</identifier><identifier>PMID: 9736641</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cerebral Cortex - chemistry ; Cerebral Cortex - cytology ; Cerebral Cortex - enzymology ; Cocaine - pharmacology ; COS Cells - chemistry ; COS Cells - enzymology ; Dopamine Antagonists - pharmacology ; Dopamine Uptake Inhibitors - pharmacology ; Female ; Gene Expression - drug effects ; Gene Expression - physiology ; Genes, Immediate-Early - physiology ; GTP Phosphohydrolases - metabolism ; GTP-Binding Proteins - physiology ; Haloperidol - pharmacology ; Hippocampus - chemistry ; Hippocampus - cytology ; Hippocampus - enzymology ; Hydrolysis ; Lipid Metabolism ; Male ; Neuronal Plasticity - physiology ; Neurons - chemistry ; Neurons - drug effects ; Neurons - enzymology ; Rats ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Receptors, Muscarinic - physiology ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 1998-09, Vol.18 (18), p.7178-7188</ispartof><rights>Copyright © 1998 Society for Neuroscience 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</citedby><cites>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793237/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793237/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9736641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingi, Tatsuya</creatorcontrib><creatorcontrib>Krumins, Andrejs M</creatorcontrib><creatorcontrib>Chidiac, Peter</creatorcontrib><creatorcontrib>Brothers, Greg M</creatorcontrib><creatorcontrib>Chung, Stephen</creatorcontrib><creatorcontrib>Snow, Bryan E</creatorcontrib><creatorcontrib>Barnes, Carol A</creatorcontrib><creatorcontrib>Lanahan, Anthony A</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><creatorcontrib>Ross, Elliott M</creatorcontrib><creatorcontrib>Gilman, Alfred G</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</description><subject>Animals</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cerebral Cortex - chemistry</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - enzymology</subject><subject>Cocaine - pharmacology</subject><subject>COS Cells - chemistry</subject><subject>COS Cells - enzymology</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Female</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression - physiology</subject><subject>Genes, Immediate-Early - physiology</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Haloperidol - pharmacology</subject><subject>Hippocampus - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - enzymology</subject><subject>Hydrolysis</subject><subject>Lipid Metabolism</subject><subject>Male</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - chemistry</subject><subject>Neurons - drug effects</subject><subject>Neurons - enzymology</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Muscarinic - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpVkV9r2zAUxcXY6NJuH2Eg9rA9OdU_W_YeBiNr0442Lcn6LG4UyVGR5c6yG_LtJy-hrHBBEufc373iIPSZkinNGT9_DGbo2qjdlJZZKiKpLKe0qso3aJIcVcYEoW_RhDBJskJI8R6dxvhICJGEyhN0UkleFIJO0ObnPkDjNF6aevDQuzbg1uLlfMXwaqhrE_uIAS_aZ-PxrdFbCC422AU8z-67tjfptnJ1AO9CjSFs8GLcLb3xvYfYO-36_Qf0zoKP5uPxPEMPlxe_Z1fZzd38evbjJtM5o33GibQSuCYFA8slq9ZrRog1JLeFyLnlJTBOKgo5lKUBKoSVjHDBJLdCU8HP0PcD92lYN2ajTeg78Oqpcw10e9WCU6-V4Laqbp9VISvOuEyAL0dA1_4Z0t9V46I23kMw7RCV5BUt0sBk_HYw6pRD7Ix9GUKJGjNSvxYXD8u71exa0XKsfxmpMaPU_On_NV9aj6Ek_etB37p6u3OdUbEB75Obqt1ud-CNOP4XapadyA</recordid><startdate>19980915</startdate><enddate>19980915</enddate><creator>Ingi, Tatsuya</creator><creator>Krumins, Andrejs M</creator><creator>Chidiac, Peter</creator><creator>Brothers, Greg M</creator><creator>Chung, Stephen</creator><creator>Snow, Bryan E</creator><creator>Barnes, Carol A</creator><creator>Lanahan, Anthony A</creator><creator>Siderovski, David P</creator><creator>Ross, Elliott M</creator><creator>Gilman, Alfred G</creator><creator>Worley, Paul F</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980915</creationdate><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><author>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cerebral Cortex - chemistry</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - enzymology</topic><topic>Cocaine - pharmacology</topic><topic>COS Cells - chemistry</topic><topic>COS Cells - enzymology</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Female</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression - physiology</topic><topic>Genes, Immediate-Early - physiology</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Haloperidol - pharmacology</topic><topic>Hippocampus - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - enzymology</topic><topic>Hydrolysis</topic><topic>Lipid Metabolism</topic><topic>Male</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - chemistry</topic><topic>Neurons - drug effects</topic><topic>Neurons - enzymology</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Muscarinic - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingi, Tatsuya</creatorcontrib><creatorcontrib>Krumins, Andrejs M</creatorcontrib><creatorcontrib>Chidiac, Peter</creatorcontrib><creatorcontrib>Brothers, Greg M</creatorcontrib><creatorcontrib>Chung, Stephen</creatorcontrib><creatorcontrib>Snow, Bryan E</creatorcontrib><creatorcontrib>Barnes, Carol A</creatorcontrib><creatorcontrib>Lanahan, Anthony A</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><creatorcontrib>Ross, Elliott M</creatorcontrib><creatorcontrib>Gilman, Alfred G</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingi, Tatsuya</au><au>Krumins, Andrejs M</au><au>Chidiac, Peter</au><au>Brothers, Greg M</au><au>Chung, Stephen</au><au>Snow, Bryan E</au><au>Barnes, Carol A</au><au>Lanahan, Anthony A</au><au>Siderovski, David P</au><au>Ross, Elliott M</au><au>Gilman, Alfred G</au><au>Worley, Paul F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1998-09-15</date><risdate>1998</risdate><volume>18</volume><issue>18</issue><spage>7178</spage><epage>7188</epage><pages>7178-7188</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>9736641</pmid><doi>10.1523/jneurosci.18-18-07178.1998</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 1998-09, Vol.18 (18), p.7178-7188 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793237 |
source | NCBI_PubMed Central(免费) |
subjects | Animals Calcium-Calmodulin-Dependent Protein Kinases - metabolism Cerebral Cortex - chemistry Cerebral Cortex - cytology Cerebral Cortex - enzymology Cocaine - pharmacology COS Cells - chemistry COS Cells - enzymology Dopamine Antagonists - pharmacology Dopamine Uptake Inhibitors - pharmacology Female Gene Expression - drug effects Gene Expression - physiology Genes, Immediate-Early - physiology GTP Phosphohydrolases - metabolism GTP-Binding Proteins - physiology Haloperidol - pharmacology Hippocampus - chemistry Hippocampus - cytology Hippocampus - enzymology Hydrolysis Lipid Metabolism Male Neuronal Plasticity - physiology Neurons - chemistry Neurons - drug effects Neurons - enzymology Rats Rats, Inbred F344 Rats, Sprague-Dawley Receptors, Muscarinic - physiology RNA, Messenger - metabolism Signal Transduction - drug effects Signal Transduction - physiology Synaptic Transmission - drug effects Synaptic Transmission - physiology |
title | Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Regulation%20of%20RGS2%20Suggests%20a%20Novel%20Mechanism%20in%20G-Protein%20Signaling%20and%20Neuronal%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Ingi,%20Tatsuya&rft.date=1998-09-15&rft.volume=18&rft.issue=18&rft.spage=7178&rft.epage=7188&rft.pages=7178-7188&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.18-18-07178.1998&rft_dat=%3Cproquest_pubme%3E73916342%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73916342&rft_id=info:pmid/9736641&rfr_iscdi=true |