Loading…

Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity

Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 1998-09, Vol.18 (18), p.7178-7188
Main Authors: Ingi, Tatsuya, Krumins, Andrejs M, Chidiac, Peter, Brothers, Greg M, Chung, Stephen, Snow, Bryan E, Barnes, Carol A, Lanahan, Anthony A, Siderovski, David P, Ross, Elliott M, Gilman, Alfred G, Worley, Paul F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143
cites cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143
container_end_page 7188
container_issue 18
container_start_page 7178
container_title The Journal of neuroscience
container_volume 18
creator Ingi, Tatsuya
Krumins, Andrejs M
Chidiac, Peter
Brothers, Greg M
Chung, Stephen
Snow, Bryan E
Barnes, Carol A
Lanahan, Anthony A
Siderovski, David P
Ross, Elliott M
Gilman, Alfred G
Worley, Paul F
description Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.
doi_str_mv 10.1523/jneurosci.18-18-07178.1998
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73916342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</originalsourceid><addsrcrecordid>eNpVkV9r2zAUxcXY6NJuH2Eg9rA9OdU_W_YeBiNr0442Lcn6LG4UyVGR5c6yG_LtJy-hrHBBEufc373iIPSZkinNGT9_DGbo2qjdlJZZKiKpLKe0qso3aJIcVcYEoW_RhDBJskJI8R6dxvhICJGEyhN0UkleFIJO0ObnPkDjNF6aevDQuzbg1uLlfMXwaqhrE_uIAS_aZ-PxrdFbCC422AU8z-67tjfptnJ1AO9CjSFs8GLcLb3xvYfYO-36_Qf0zoKP5uPxPEMPlxe_Z1fZzd38evbjJtM5o33GibQSuCYFA8slq9ZrRog1JLeFyLnlJTBOKgo5lKUBKoSVjHDBJLdCU8HP0PcD92lYN2ajTeg78Oqpcw10e9WCU6-V4Laqbp9VISvOuEyAL0dA1_4Z0t9V46I23kMw7RCV5BUt0sBk_HYw6pRD7Ix9GUKJGjNSvxYXD8u71exa0XKsfxmpMaPU_On_NV9aj6Ek_etB37p6u3OdUbEB75Obqt1ud-CNOP4XapadyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73916342</pqid></control><display><type>article</type><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><source>NCBI_PubMed Central(免费)</source><creator>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</creator><creatorcontrib>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</creatorcontrib><description>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.18-18-07178.1998</identifier><identifier>PMID: 9736641</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cerebral Cortex - chemistry ; Cerebral Cortex - cytology ; Cerebral Cortex - enzymology ; Cocaine - pharmacology ; COS Cells - chemistry ; COS Cells - enzymology ; Dopamine Antagonists - pharmacology ; Dopamine Uptake Inhibitors - pharmacology ; Female ; Gene Expression - drug effects ; Gene Expression - physiology ; Genes, Immediate-Early - physiology ; GTP Phosphohydrolases - metabolism ; GTP-Binding Proteins - physiology ; Haloperidol - pharmacology ; Hippocampus - chemistry ; Hippocampus - cytology ; Hippocampus - enzymology ; Hydrolysis ; Lipid Metabolism ; Male ; Neuronal Plasticity - physiology ; Neurons - chemistry ; Neurons - drug effects ; Neurons - enzymology ; Rats ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Receptors, Muscarinic - physiology ; RNA, Messenger - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 1998-09, Vol.18 (18), p.7178-7188</ispartof><rights>Copyright © 1998 Society for Neuroscience 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</citedby><cites>FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793237/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793237/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9736641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingi, Tatsuya</creatorcontrib><creatorcontrib>Krumins, Andrejs M</creatorcontrib><creatorcontrib>Chidiac, Peter</creatorcontrib><creatorcontrib>Brothers, Greg M</creatorcontrib><creatorcontrib>Chung, Stephen</creatorcontrib><creatorcontrib>Snow, Bryan E</creatorcontrib><creatorcontrib>Barnes, Carol A</creatorcontrib><creatorcontrib>Lanahan, Anthony A</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><creatorcontrib>Ross, Elliott M</creatorcontrib><creatorcontrib>Gilman, Alfred G</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</description><subject>Animals</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cerebral Cortex - chemistry</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - enzymology</subject><subject>Cocaine - pharmacology</subject><subject>COS Cells - chemistry</subject><subject>COS Cells - enzymology</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dopamine Uptake Inhibitors - pharmacology</subject><subject>Female</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression - physiology</subject><subject>Genes, Immediate-Early - physiology</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Haloperidol - pharmacology</subject><subject>Hippocampus - chemistry</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - enzymology</subject><subject>Hydrolysis</subject><subject>Lipid Metabolism</subject><subject>Male</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - chemistry</subject><subject>Neurons - drug effects</subject><subject>Neurons - enzymology</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Muscarinic - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpVkV9r2zAUxcXY6NJuH2Eg9rA9OdU_W_YeBiNr0442Lcn6LG4UyVGR5c6yG_LtJy-hrHBBEufc373iIPSZkinNGT9_DGbo2qjdlJZZKiKpLKe0qso3aJIcVcYEoW_RhDBJskJI8R6dxvhICJGEyhN0UkleFIJO0ObnPkDjNF6aevDQuzbg1uLlfMXwaqhrE_uIAS_aZ-PxrdFbCC422AU8z-67tjfptnJ1AO9CjSFs8GLcLb3xvYfYO-36_Qf0zoKP5uPxPEMPlxe_Z1fZzd38evbjJtM5o33GibQSuCYFA8slq9ZrRog1JLeFyLnlJTBOKgo5lKUBKoSVjHDBJLdCU8HP0PcD92lYN2ajTeg78Oqpcw10e9WCU6-V4Laqbp9VISvOuEyAL0dA1_4Z0t9V46I23kMw7RCV5BUt0sBk_HYw6pRD7Ix9GUKJGjNSvxYXD8u71exa0XKsfxmpMaPU_On_NV9aj6Ek_etB37p6u3OdUbEB75Obqt1ud-CNOP4XapadyA</recordid><startdate>19980915</startdate><enddate>19980915</enddate><creator>Ingi, Tatsuya</creator><creator>Krumins, Andrejs M</creator><creator>Chidiac, Peter</creator><creator>Brothers, Greg M</creator><creator>Chung, Stephen</creator><creator>Snow, Bryan E</creator><creator>Barnes, Carol A</creator><creator>Lanahan, Anthony A</creator><creator>Siderovski, David P</creator><creator>Ross, Elliott M</creator><creator>Gilman, Alfred G</creator><creator>Worley, Paul F</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980915</creationdate><title>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</title><author>Ingi, Tatsuya ; Krumins, Andrejs M ; Chidiac, Peter ; Brothers, Greg M ; Chung, Stephen ; Snow, Bryan E ; Barnes, Carol A ; Lanahan, Anthony A ; Siderovski, David P ; Ross, Elliott M ; Gilman, Alfred G ; Worley, Paul F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cerebral Cortex - chemistry</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - enzymology</topic><topic>Cocaine - pharmacology</topic><topic>COS Cells - chemistry</topic><topic>COS Cells - enzymology</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dopamine Uptake Inhibitors - pharmacology</topic><topic>Female</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression - physiology</topic><topic>Genes, Immediate-Early - physiology</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Haloperidol - pharmacology</topic><topic>Hippocampus - chemistry</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - enzymology</topic><topic>Hydrolysis</topic><topic>Lipid Metabolism</topic><topic>Male</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - chemistry</topic><topic>Neurons - drug effects</topic><topic>Neurons - enzymology</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Muscarinic - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingi, Tatsuya</creatorcontrib><creatorcontrib>Krumins, Andrejs M</creatorcontrib><creatorcontrib>Chidiac, Peter</creatorcontrib><creatorcontrib>Brothers, Greg M</creatorcontrib><creatorcontrib>Chung, Stephen</creatorcontrib><creatorcontrib>Snow, Bryan E</creatorcontrib><creatorcontrib>Barnes, Carol A</creatorcontrib><creatorcontrib>Lanahan, Anthony A</creatorcontrib><creatorcontrib>Siderovski, David P</creatorcontrib><creatorcontrib>Ross, Elliott M</creatorcontrib><creatorcontrib>Gilman, Alfred G</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingi, Tatsuya</au><au>Krumins, Andrejs M</au><au>Chidiac, Peter</au><au>Brothers, Greg M</au><au>Chung, Stephen</au><au>Snow, Bryan E</au><au>Barnes, Carol A</au><au>Lanahan, Anthony A</au><au>Siderovski, David P</au><au>Ross, Elliott M</au><au>Gilman, Alfred G</au><au>Worley, Paul F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1998-09-15</date><risdate>1998</risdate><volume>18</volume><issue>18</issue><spage>7178</spage><epage>7188</epage><pages>7178-7188</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Long-term neuronal plasticity is known to be dependent on rapid de novo synthesis of mRNA and protein, and recent studies provide insight into the molecules involved in this response. Here, we demonstrate that mRNA encoding a member of the regulator of G-protein signaling (RGS) family, RGS2, is rapidly induced in neurons of the hippocampus, cortex, and striatum in response to stimuli that evoke plasticity. Although several members of the RGS family are expressed in brain with discrete neuronal localizations, RGS2 appears unique in that its expression is dynamically responsive to neuronal activity. In biochemical assays, RGS2 stimulates the GTPase activity of the alpha subunit of Gq and Gi1. The effect on Gi1 was observed only after reconstitution of the protein in phospholipid vesicles containing M2 muscarinic acetylcholine receptors. RGS2 also inhibits both Gq- and Gi-dependent responses in transfected cells. These studies suggest a novel mechanism linking neuronal activity and signal transduction.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>9736641</pmid><doi>10.1523/jneurosci.18-18-07178.1998</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1998-09, Vol.18 (18), p.7178-7188
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793237
source NCBI_PubMed Central(免费)
subjects Animals
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cerebral Cortex - chemistry
Cerebral Cortex - cytology
Cerebral Cortex - enzymology
Cocaine - pharmacology
COS Cells - chemistry
COS Cells - enzymology
Dopamine Antagonists - pharmacology
Dopamine Uptake Inhibitors - pharmacology
Female
Gene Expression - drug effects
Gene Expression - physiology
Genes, Immediate-Early - physiology
GTP Phosphohydrolases - metabolism
GTP-Binding Proteins - physiology
Haloperidol - pharmacology
Hippocampus - chemistry
Hippocampus - cytology
Hippocampus - enzymology
Hydrolysis
Lipid Metabolism
Male
Neuronal Plasticity - physiology
Neurons - chemistry
Neurons - drug effects
Neurons - enzymology
Rats
Rats, Inbred F344
Rats, Sprague-Dawley
Receptors, Muscarinic - physiology
RNA, Messenger - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
title Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Regulation%20of%20RGS2%20Suggests%20a%20Novel%20Mechanism%20in%20G-Protein%20Signaling%20and%20Neuronal%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Ingi,%20Tatsuya&rft.date=1998-09-15&rft.volume=18&rft.issue=18&rft.spage=7178&rft.epage=7188&rft.pages=7178-7188&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.18-18-07178.1998&rft_dat=%3Cproquest_pubme%3E73916342%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-307f7a3c062af3729bb200fe05f6453f38a23091a5a88ea144f72034273f4c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73916342&rft_id=info:pmid/9736641&rfr_iscdi=true