Loading…
Augmentation of CBCT Reconstructed From Under-Sampled Projections Using Deep Learning
Edges tend to be over-smoothed in total variation (TV) regularized under-sampled images. In this paper, symmetric residual convolutional neural network (SR-CNN), a deep learning based model, was proposed to enhance the sharpness of edges and detailed anatomical structures in under-sampled cone-beam...
Saved in:
Published in: | IEEE transactions on medical imaging 2019-11, Vol.38 (11), p.2705-2715 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Edges tend to be over-smoothed in total variation (TV) regularized under-sampled images. In this paper, symmetric residual convolutional neural network (SR-CNN), a deep learning based model, was proposed to enhance the sharpness of edges and detailed anatomical structures in under-sampled cone-beam computed tomography (CBCT). For training, CBCT images were reconstructed using TV-based method from limited projections simulated from the ground truth CT, and were fed into SR-CNN, which was trained to learn a restoring pattern from under-sampled images to the ground truth. For testing, under-sampled CBCT was reconstructed using TV regularization and was then augmented by SR-CNN. Performance of SR-CNN was evaluated using phantom and patient images of various disease sites acquired at different institutions both qualitatively and quantitatively using structure similarity (SSIM) and peak signal-to-noise ratio (PSNR). SR-CNN substantially enhanced image details in the TV-based CBCT across all experiments. In the patient study using real projections, SR-CNN augmented CBCT images reconstructed from as low as 120 half-fan projections to image quality comparable to the reference fully-sampled FDK reconstruction using 900 projections. In the tumor localization study, improvements in the tumor localization accuracy were made by the SR-CNN augmented images compared with the conventional FDK and TV-based images. SR-CNN demonstrated robustness against noise levels and projection number reductions and generalization for various disease sites and datasets from different institutions. Overall, the SR-CNN-based image augmentation technique was efficient and effective in considerably enhancing edges and anatomical structures in under-sampled 3D/4D-CBCT, which can be very valuable for image-guided radiotherapy. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2019.2912791 |