Loading…
Fast fitting of reflectivity data of growing thin films using neural networks
X‐ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organi...
Saved in:
Published in: | Journal of applied crystallography 2019-12, Vol.52 (6), p.1342-1347 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X‐ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α‐sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.
Artificial neural networks trained with simulated data are shown to correctly and quickly determine film parameters from experimental X‐ray reflectivity curves. |
---|---|
ISSN: | 1600-5767 0021-8898 1600-5767 |
DOI: | 10.1107/S1600576719013311 |